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We present some formulas derived from the devel-

oped boundary integral equation theory, which are

important for calculations of the efficiency, absorp-

tion, and polarization angles of gratings in coni-

cal diffraction. Examples of efficiency computations

of x-ray grazing-incidence, high-conductive anoma-

lously absorbing, high-spatial-frequency deep trans-

mission, and cross-polarized symmetrical-groove-

profiled gratings are considered. The solver tested

has been found universal and accurate for calculat-

ing various off-plane diffraction problems.

1 Introduction

We consider conical (off-plane) diffraction of time-
harmonic plane waves by 1D structures. The term
’1D’ refers to a diffraction grating or a rough mir-
ror having any conductivity on a planar surface
in R

3, which is periodic in one surface direction,
constant in the second, and has an arbitrary bor-
der profile including edges and non-functions. For
the numerical simulation of conical diffraction by
general optical gratings several rigorous methods
have been proposed: differential, coordinate trans-
formation, modal, fictitious sources, and finite ele-
ment methods [1]. In Ref. [2] T-matrix and inte-
gral equation methods were described for off-plane
transmission and low-conducting sine-profiled grat-
ings. The classical (in-plane) boundary integral
equation methods are found to be very efficient to
model high-conductive deep-groove gratings in the
TM polarization, profile curves with corners, grat-
ings with thin coated layers, randomly rough mir-
rors and gratings, and diffraction problems at very
small wavelength-to-period ratios.

The electromagnetic formulation of conical
diffraction by gratings reduces Maxwell equations
to a system of two Helmholtz equations in R

2,
which are coupled by transmission conditions at
the interface between different materials and a sub-
ject to radiation conditions in the upper and lower
mediums. The integral equations obtained using

boundary integrals of the single and double layer
potentials including the tangential derivative of sin-
gle layer potentials interpreted as singular integrals
can be found elsewhere [3]. In the case of classi-
cal diffraction, when the incident wave vector is
orthogonal to the groove (z-) direction, the sys-
tem degenerates to independent transmission prob-
lems for the two basic polarizations of the incident
wave, whereas for the case of conical diffraction
the boundary values of the z-components as well
as their normal and tangential derivatives at the
interface are coupled.

In this paper we present some important for-
mulas, including a few new ones, derived from
the theory which are expedient for the calcula-
tion of the far-field, general polarization proper-
ties, and absorption in conical diffraction mounts.
Besides, we provide the numerical examples for
cases of well known optical applications of coni-
cal diffraction, more specifically: shallow gratings
working in the x-ray and extreme ultraviolet (EUV)
ranges at grazing angles; shallow and deep high-
conductive, anomalously absorbing gratings illumi-
nated at near normal and grazing incidence; high-
spatial-frequency, deep transmission gratings hav-
ing high anti-reflection and polarization conversion
properties; generalized spectroscopic ellipsometry
and scatterometry techniques.

2 Diffraction problem

The grating is a cylindrical surface whose genera-
trices are parallel to the z-axis and whose section in
the (x, y)-plane is given by the simple, nonintersect-
ing and d-periodic curve Σ, either C∞ or piecewise
C2 (see Fig. 1). We assume that the open arc Γ
denotes one period of Σ. The wavenumber inside
G+ × R is denoted by k+ = (α,−β, γ) with the
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Figure 1: Schematic cross section of a grating.

z-components of the incident time-harmonic field

ui(x, y) eiγz = Eiz(x, y) e i(αx−βy+γz),

vi(x, y) eiγz = Biz(x, y) e i(αx−βy+γz),

where α = k+ sin θi cosφi, β = k+ cos θi cosφi,
γ = k+ sinφi, and |θi|, |φi| < π/2. The compo-
nents of the wave vector k± for (x, y) ∈ G± satisfy
β > 0 and (k±)2 = ω2ε±µ± with piecewise con-
stant functions of electric permittivity and mag-
netic permeability ε(x, y) = ε± and µ(x, y) = µ±,
respectively. Due to the periodicity of Σ the inci-
dent wave is scattered into a finite number of plane
waves in G+ × R and also in G− × R if k− is real.
The wave vectors of these outgoing modes lie on the
surface of a cone whose axis is parallel to the z–axis.
Therefore one speaks of conical diffraction. Classi-
cal diffraction corresponds to k+ · ez = 0, whereas
φi 6= 0 characterizes conical diffraction.

The Maxwell equations imply that the total fields
Ez , Hz satisfy the Helmholtz equations in G±

(∆ + (κ±)2)Ez = (∆ + (κ±)2)Hz = 0,

where (κ±)2 = (k±)2 − γ2. It can be shown that
under the condition κ 6= 0, which will be assumed
throughout, the components Ez, Hz determine the
electromagnetic field (E,H).

By using Hz =
√

(ε+/µ+)Bz = ZBz and the
continuity of the tangential components of E and
H on the surface we can write the jump conditions

in the form

[

Ez
]

Σ
=

[

Hz

]

Σ
= 0,

[ε ω2∂nEz
κ2

]

Σ
= −ε+ sinφ

[ω2∂tBz
κ2

]

Σ
,

[µω2∂nBz
κ2

]

Σ
= µ+ sinφ

[ω2∂tEz
κ2

]

Σ
,

where [.] denotes the jump of functions on Σ and
∂n = nx∂x + ny∂y and ∂t = −ny∂x + nx∂y are
the normal and tangential derivatives on Σ, respec-
tively. The z-components of the incoming field

Eiz(x, y) = piz ei(αx−βy), Biz(x, y) = siz ei(αx−βy) /Z

are α-quasiperiodic in x of period d. Here the vector
si is orthogonal to the plane spanned by ki and
the grating normal ν = (0, 1, 0) and pi lies in that
plane:

si = ki × (0, 1, 0)/|ki × (0, 1, 0)|, pi = si × ki/|ki|.

If ki = (0,−k+, 0), we set si = (0, 0, 1) and hence
pi = (1, 0, 0). Then, the incident plane wave is
given by its polarization angles

δi = arctan[|(Ei, si)|/|(Ei,pi)|],

ψi = − arg[(Ei, si)/(Ei,pi)],

where δi ∈ [0, π/2], ψi ∈ (−π, π]. Since Ei is or-
thogonal to the wave vector, (Ei,ki) = 0, one can
decompose Ei

Ei = (Ei, si) si + (Ei, pi)pi.

It is easy to see that for incident or diffracted field
components (E, s) and (E,p) with propagating an-
gles θ and φ and ρ = cosφ(sin2 θ cos2 φ+ sin2 φ)0.5

(E, s) = (Ez sin θ +Bz cos θ sinφ)/ρ,

(E,p) = (Ez cos θ sinφ−Bz sin θ)/ρ.
(1)

If ki ‖ ν, then (Ei, si) = Eiz and (Ei,pi) = −Biz.
From (1) under the normalization condition

|(Ei, si)|2 + |(Ei,pi)|2 = 1

and ξ = (sin2 θi + cos2 θi sin2 φi)0.5 we have

Eiz = (sin θi sin δi − cos θi sinφi cos δi e(iψi))/ξ,

Biz = (cos θi sinφi sin δi + sin θi cos δi e(iψi))/ξ,

to define an incident plane wave with the given po-
larization angles δi and ψi. In the case ki ‖ ν we

choose Eiz = sin δi, Biz = cos δi e(iψi).
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The well known outgoing wave conditions are:

(Ez , Bz) = (Eiz , B
i
z) +

∑

n∈Z

(E+
n , B

+
n ) ei(αnx+β

+
n
y),

for y ≥ H ,

(Ez , Bz) =
∑

n∈Z

(E−
n , B

−
n ) e i(αnx−β

−
n
y),

for y ≤ −H , where Σ ⊂ {(x, y) : |y| < H}, and αn,
β±
n are given by

αn = α+
2πn

d
, β±

n =
√

(κ±)2 − α2
n

with 0 ≤ arg β±
n < π.

In the following it is always assumed that

arg ε− ≤ 0, argµ− ≤ π, arg (ε−µ−) < 2π ,

which holds for all existing optical (meta)materials.
Then 0 ≤ arg(κ−)2 < 2π and β−

n are properly de-
fined for all n.

Denoting the z-components of the total fields

Ez =

{

u+ +Eiz
u−

, Bz =

{

v+ +Biz in G+,
v− in G− ,

the problem is defined completely in respect to u±

and v±. To transform the transmission problem for
the Helmholtz equations in R

2 to operator bound-
ary integral equations we combined the direct and
indirect approach. The function u−, v− are repre-
sented as the single layer potentials with densities
w, τ on Γ

u−(P ) = 2

∫

Γ

w(Q)Ψ(κ−),α(P −Q) dσQ,

v−(P ) = 2

∫

Γ

τ(Q)Ψ(κ−),α(P −Q) dσQ,

where Ψk,α(P ), P = (X,Y ), is the quasi-periodic
fundamental solution of period d given by the infi-
nite series

i

4

∞
∑

n=−∞

H
(1)
0

(

k
√

(X − nd)2 + Y 2
)

eindα,

As described in [3] the functions w, τ are solutions
of the system of integral equations

ε−(κ+)2

ε+(κ−)2
V +
α (L−

α − I)w −
(

I +K+
α

)

V −
α w

+ sinφi
(

1 −
(κ+)2

(κ−)2

)

H+
α V

−
α τ = 2Eiz,

µ−(κ+)2

µ+(κ−)2
V +
α (L−

α − I)τ −
(

I +K+
α

)

V −
α τ

− sinφi
(

1 −
(κ+)2

(κ−)2

)

H+
α V

−
α w = 2Biz,

(2)

with the boundary operators defined for P ∈ Σ by

V ±
α ϕ(P ) = 2

∫

Γ

ϕ(Q)Ψ(κ±),α(P −Q) dσQ,

K±
α ϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(Q)Ψ(κ±),α(P −Q) dσQ,

L−
αϕ(P ) = 2

∫

Γ

ϕ(Q) ∂n(P )Ψ(κ−),α(P −Q) dσQ,

H+
α ϕ(P ) = 2

∫

Γ

ϕ(Q) ∂t(Q)Ψ(κ+),α(P −Q) dσQ.

The single and double layer potentials V ±
α , K±

α as
well as L±

α appear already in integral methods for
classical diffraction. The integralH+

α ϕ has to be in-
terpreted as principal value integral, therefore (2) is
a system of singular integral equations. The equiv-
alence of the system to the differential formulation
of conical diffraction has been shown in [3]. More-
over, the existence and uniqueness of solutions in
appropriate function spaces ensure the convergence
of numerical methods.

3 Orders, efficiency, and absorption

The reflected and transmitted diffraction orders of
number n have the wave vectors

k±n = (αn, β
±
n , γ)

= k±(sin θ±n cosφ±, cos θ±n cosφ±, sinφ±),

with (k±)2 − γ2 ≥ α2
n. Since the z-dependence of

all functions is given by exp(iγz)

tan θ±n = ∓αn/β
±
n = ∓αn/[(k

±)2 − γ2 − α2
n]0.5,

φ+
n = φ+ = φi , φ−n = φ− = arcsin(k+ sinφi/k−).

By the convention, the outgoing angles θ±n of the
reflected and transmitted orders (to ensure that
θ+0 = −θi) are taken from the interval [−π/2 , π/2],
as well as φ+ and φ−.

The p and s components of the E-fields of the
orders are defined similar to those of the incident
wave. For a reflected or transmitted order with the
wave vector k±

n polarization angles δ±n and ψ±
n are

determined using (1) for scalar products (E±
n , s

±
n )

and (E±
n ,p

±
n )

δ±n = arctan[|(E±
n , s

±
n )|/|(E±

n ,p
±
n )|],

ψ±
n = − arg[(E±

n , s
±
n )/(E±

n ,p
±
n )].

The efficiency of a diffracted order represents the
proportion of power radiated in each order. Defin-
ing the power as the flux of the Pointing vector
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modulus |Pi| = Re (Ei × Hi)/2 through a normal-
ized rectangle parallel to the (x, z)-plane, the ratio
of the power of a reflected or transmitted propagat-
ing order and of the incident wave gives the conical
diffraction efficiency η±n of this order in the simple
form (A denotes the complex conjugate of A):

η±n = (β±
n /β)(|(E±

n , s
±
n )|2 + |(E±

n ,p
±
n )|2).

If Im k− > 0 then there are no transmitted or-
ders. Thus the usual law of the energy conservation,
the sum of efficiencies of all reflected and transmit-
ted orders should be equal to the power of the inci-
dent wave, does not hold. Instead, some part of the
power is absorbed in the substrate. And such in-
dependently calculated heat absorption power plus
the power of the reflected orders equals to the power
of the incident wave. This requirement is a conve-
nient single computation tool to check the quality
of the numerical solution [4]. For the simple grating
geometry the absorption power Acon can be com-
puted from integrals of the solution of the partial
differential formulation of conical diffraction which
is derived applying Green’s formula [1]:

Acon =
(κ+)2

β
Im

[

1

(κ−)2

(ε−

ε+

∫

Γ

∂nEz Ez

+
µ−

µ+

∫

Γ

∂nBz Bz + 2 sinφi Re

∫

Γ

Ez ∂tBz

)

]

.
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Figure 2: Efficiency of x-ray lamellar grating
vs azimuthal grazing incident angle.

4 Conical diffraction examples

The numerical implementation approach expedi-
ent for the calculation of far-fields and polarization

properties of conical diffraction by gratings and di-
verse numerical tests devoted to comparing, con-
vergence, accuracy, computation time, and obtain-
ing results for an important case were described
in Ref. [1]. Here we present the numerical exper-
iments taken from various optical applications of
conical diffraction.

4.1 X-ray–EUV grazing incidence gratings

The conical diffraction mounting in which the direc-
tion of incident light is confined to a plane parallel
to the direction of the grooves has the unique prop-
erty of maintaining high and sustained diffraction
efficiency that is very important in the x-ray—EUV
range. Such gratings are utilized as dispersive ele-
ments in laboratory and space spectral instruments,
time-delayed compensators or splitters, and spec-
tral purity filters [5, 6, 7, 8].

In Fig. 2 the absolute efficiency in the 0-th and
±1-st diffraction orders of the Pt 5000 /mm lamel-
lar symmetrical-profile grating with 2H = 3.7 nm is
calculated for the TE polarized incidence radiation
with λ = 0.1 nm and θi = 0 as a function of the
azimuthal grazing angle. As one can see in Fig. 2,
for the defined azimuthal grazing angle of ∼ 0.25◦

the efficiency are close for three orders simultane-
ously. Besides, the results obtained for the finite
conductivity are very close to those of the perfect
conductivity approximation multiplied by Fresnel
reflectances [1].

4.2 Anomalously absorbing gratings

Resonance and non-resonance anomalies differing
in their nature can be effectively explored in high
conductive gratings, such as: surface plasmon ex-
citations, Brewster and Bragg conditions, groove
shape features, etc [9, 10, 11, 12]. Because of the s
and p modes in conical diffraction being coupled
through the boundary conditions, the associated
problems are more general, and gratings act as per-
fect absorbers and local-field enhancers.

In Fig. 3. the absorption of the Ag sine grating
with d = 2.2µm and 2H = 100 nm is calculated
for the TE and TM polarized incidence light with
λ = 663 nm as a function of θi for φi = 0 (in-plane)
and φi = 50◦ (conical). For in-plane diffraction
the anomalous absorption exists only for the TM
polarization, while for conical diffraction the both
components are absorbed but in smaller amounts.
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Figure 3: Absorption of conductive sine grat-
ing vs polar incident angle.

4.3 Deep transmission gratings

High anti-reflection and polarization conversion
properties of gratings are used widely for applica-
tions as antireflection surfaces. Such gratings are
also used as color filters, artificial dielectrics, beam
splitters, wave-plate-type devices, and as their com-
binations [13, 14].

In Fig. 4. the efficiency in the −1-st Bragg trans-
mitted order of the dielectric ((ε−)0.5 = 1.52) sym-
metrical triangle 1-µm-period grating with 2H =
2.3µm is calculated for the TE and TM polarized
incidence light with λ = 1 µm as a function of θi for
φi = 0 (in-plane) and φi = 27.1◦ (conical). For in-
plane diffraction the TE and TM transmitted effi-
ciencies differ significantly, while for conical diffrac-
tion the both components are close and high due to
the conversion properties.
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Figure 4: Efficiency of dielectric triangle grat-
ing vs polar incident angle.

4.4 Ellipsometry and scatterometry

For ellipsometric scatterometry with an arbitrary
azimuth angle the Jones matrix is not diagonal and
additional information is available on the grating
groove shape, but a generalized ellipsometer, or a
Mueller polarimeter, are necessary to retrieve all
of the information contained [15, 16]. Solution of
the inverse problem to reconstruct the groove shape
from a measured diffraction pattern in scatterome-
try is more complicated in a conical case, however
it may also provide additional information on the
structure parameters.

In Fig. 5. the amplitude cross-polarization com-
ponents of the 0-th reflected order of the trape-
zoidal transmission grating (ε− = 4) with d = 360
nm, the top width of 180 nm, and 2H = 180 nm are
calculated for the TE and TM polarized incidence
light with λ = 632.8 nm and φi = 30◦ as a func-
tion of θi. For off-plane diffraction the TE and TM
0-order reflected amplitude components are equal
for symmetrical groove profiles that approves the
validation of the code and the accuracy of compu-
tations. In Fig. 6 the good coincidence is demon-
strated also for the phases of this example.
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Figure 5: Amplitudes of dielectric trapezoidal
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5 Conclusion

We presented some formulas derived from the devel-
oped boundary integral equation theory, which are
important for calculations of the efficiency, absorp-
tion, and polarization angles of general 1-D grat-
ings in conical diffraction. Examples of efficiency
computations of x-ray grazing-incidence, high-
conductive anomalously absorbing, high-spatial-
frequency deep transmission, and cross-polarized
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Figure 6: Phases of dielectric trapezoidal grat-
ing vs polar incident angle.

symmetrical-groove-profiled gratings were consid-
ered. The solver developed and tested has been
found universal and accurate for calculating vari-
ous off-plane diffraction problems for cases of high-
conducting, deep groove, and small wavelength-to-
period ratio periodical structures including borders
with edges.
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