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Diffraction problems by 1D multilayer structures

having arbitrary border profiles including edges are

considered at smallest wavelength-to-period ratios.

The integral equation theory is so flexible that one

can point out a few areas of its modifiability. In

this work special attention is paid to physical mod-

els and low-level details, as well as to the general-

ization of the power balance criterion for the case

of absorbing gratings. In the case of shallow grat-

ings and mirrors, introducing speed-up terms pro-

duces an adverse numerical effect because of the en-

suing uncontrolled growth of coefficients in analyti-

cally improved asymptotic estimations.

1 Introduction

It is well-known that solution of the 2D Helmholtz
equation with any rigorous numerical code meets
with difficulties at small wavelength-to-period ra-
tios (λ/d << 1) [1]. While the Standard Bound-
ary Integral Equation methods (SIMs) are robust,
reliable, and efficient, they exhibit poor conver-
gence and loss of accuracy in the high-frequency
range due to numerical contamination in quadra-
tures. Increasing matrix size and enhancing com-
putation precision, as well as application of conver-
gence speed-up techniques, which are successfully
explored in low- and mid-frequency ranges, lead to
unreasonably stringent requirements for computing
times and storage capacities in high and, especially,
ultrahigh frequency ranges (λ/d < 1.E − 2 and
λ/d < 1.E − 3).

This work is a part of the research that has been
pursued over a long period of time with the pur-
pose of developing accurate and fast numerical algo-
rithms, including commercial ones designed to work
at all, including the shortest, wavelength ranges
[2, 3]. We consider diffraction from 1D multilayer
structures with arbitrary border profiles, including
edges and random roughnesses. The term ”1D”
refers to a general 1D grating or rough mirror on
a planar surface which is periodic in one surface
direction, constant in the second, and has a finite

number of borders and layers in the third one. The
actual number of identical or different borders and
layers can be large enough—up to a few thousands
for x-ray applications. Though various approxi-
mated analyses [4, 5] developed for treatment of
such challenging diffraction problems enjoy more or
less successful application, they are always plagued
with uncertainties which make comparison between
rigorous and non-rigorous approaches difficult.

The boundary integral equation theory is so flex-
ible that we can point out a few areas of its mod-
ifiability [6]. They are: (1) Physical model (choice
of boundary types and conditions); (2) Mathemat-
ical structure (integral representations using po-
tentials and a multilayer scheme); (3) Method of
discretization (choice of trial functions, discretiza-
tion scheme and treatment of corners in boundary
profile curves); (4) Low-level details (calculations
and optimization of Green’s functions and their
derivatives, mesh of collocation points, quadrature
rules, solution of linear systems, caching of repeat-
ing quantities, etc.). A self-consistent explana-
tion of various integral methods is well beyond the
scope of this paper, and one should rather be ad-
dressed to the references. In this work, special at-
tention is paid to (1) and (4) of the described Mod-
ified Boundary Integral Equation method (MIM)
for small λ/d ratios, as well as to a generalization
of power balance criteria for the case of absorbing
gratings.

2 Principal difference in convergence be-

tween SIM and MIM at λ/d << 1

Convergence of the SIM and MIM is demonstrated
for a simple case of diffraction on a plane trans-
mission border (normal incidence in vacuum with
the lower-medium refractive index n1 = 1.5). For
λ/d = 1 in Fig. 1, the convergence rate reached
with speed-up techniques is high, with the En-
ergy balance error of ∼ 1.E − 6 in both polar-
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Figure 1: Using the SIM for the problem of
diffraction on a plane interface for λ/d = 1
(normal incidence, n0 = 1, n1 = 1.5).

Figure 2: Same as Fig. 1 but for λ/d = 0.01.

ization states for the number of collocation points
N = 10. For λ/d = 0.01 in Fig. 2, the convergence
rate, again obtained with speed-up techniques, is
low with the Energy balance and Transmitted en-
ergy errors of ∼ 1.E − 3 in both polarizations for
N = 500. The difference between the TE and TM
transmitted energies for N < 300 is seen to be large,
∼ 1.E−1. For λ/d = 1.E−3 in Fig. 3, the conver-
gence rate calculated with speed-up techniques is
very low, with the Energy balance error of ∼ 1.E−2
in both polarizations for N = 1000. As seen from
Fig. 3, convergence of the series deteriorates for
N > 1000 as the distance between the Green func-
tion’s arguments tends to 0 (we use the Nyström
collocation method [7]).

In contrast to the data of Figs. 2–3, the results

Figure 3: Same as Fig. 1 but for λ/d = 0.001.

for λ/d = 1.E − 6 obtained without application of
any speed-up techniques exhibit the fastest conver-
gence rate with a negligible Energy balance error
(on the order of the computer accuracy) for N = 2
only. The most important among the convergence
speed-up options which have to be switched off in
this case is the allowance for logarithmic singularity,
and second important, is the correction employed
to account for the cut-off terms in the expansions
of Green’s functions and their normal derivatives
(Aitken’s term δ2 in our case [6]). Such calculations
depend also significantly on the summation rule
chosen for the Green’s series (see Sec. 3). While
the results presented in Figs. 1–3 may certainly be
different for various realizations of the method and
of the speed-up techniques used, the overall pattern
remains the same.

3 A summation rule for Green’s series

The SIM and MIM specify the number of positive
and negative members in Green’s function and their
normal derivative expansions [6]. In the simplest
case typical of real problems, the series are trun-
cated symmetrically at the lower summation index
−P and the upper index +P , where P is an integer
defined by P ≈ gN . The truncation ratio g is opti-
mized for small values of N and is kept constant as
N increases. It was found that g = 1/2 is a reason-
ably good choice for most practical computations
and, in particular, for small λ/d ratios.

Typical dependences on g for the above example
with λ/d = 1.E − 2 are shown in Fig. 4. The En-
ergy balance is closer to 1 and TE/TM Transmitted
energies are close to each other at g ≈ 0.5, with di-
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Figure 4: Using the SIM for the same problem
as in Fig. 2 for N = 100.

vergence seen to set in at smaller and larger values
of g. While today this rule is no more than em-
pirical, there can be no doubt whatsoever that this
choice is valid, and this has been verified in many
realistic examples during the recent years. Note
that in the SIM developed in [8], g = 2/3 for the
resonance domain and should be varied for differ-
ent λ/d ratios. It is worth noting that g = 2/3 is
worse than g = 1/2 because the computation time
is proportional to 2PN2.

A few words regarding the extent to which calcu-
lations made in extremely hard cases can be trusted
are in order here. The workability of the programs
has been confirmed by numerous tests usually em-
ployed in non-extreme cases: the reciprocity theo-
rem, stabilization of results under doubling of N
and variation of g, comparison with analytically
amenable cases of plane interfaces, consideration of
the inverse (non-physical) radiation condition, in-
sertion of fictitious boundaries, variation of colloca-
tion point distribution, comparison with the results
obtained by another of our codes or with published
data, or with data corresponded to us by other re-
searchers. The most important accuracy criteria
based on a single computation is the Energy bal-
ance that can be generalized to include the lossy
case.

4 Generalization of the energy balance

criteria for lossy gratings

If the grating is perfectly conducting, then the con-
servation of energy is expressed by the standard

energy criterion
R = 1, (1)

where R is the sum of the reflection order efficien-
cies.

If the grating is lossless, Im nl = 0, l =
0, . . . , M, M + 1 is the number of layers; then con-
servation of energy is expressed by a similar energy
criterion

R + T = 1, (2)

where T is the sum of the transmission order effi-
ciencies.

In a general case,

A + R + T = 1, (3)

where A is called the absorption coefficient or sim-
ply the Absorption in the given diffraction problem.
Besides being physically meaningful, the sum in (3)
is very useful as one of numerical accuracy tests for
computational codes and especially important in
the x-ray and extreme ultra-violet (EUV) ranges,
where absorption plays a predominant role. In the
lossy case, one needs an independently calculated
quantity A to verify Eq. (3). For such a quantity,
we use the absorption integral defined in [7] and
derived below.

Because of the problem being invariant under
translation by an integer number of periods along
the axis perpendicular to the grooves, one may re-
strict oneself to an analysis of the heat power loss
ẼA per grating period. ẼA can be calculated as
a difference between the energy fluxes that have
crossed the upper, Γ1, and the lower, ΓM , bound-
aries of the multilayer structure through an ele-
ment of area bounded by the x = 0, x = d and
z = 0, z = 1 planes:

ẼA =

1∫

0

dz

∫

Γ1

S−

1 n1dl −
1∫

0

dz

∫

ΓM

S−

MnMdl, (4)

where S−

1 and S−

M are time-averaged complex
Poynting vectors calculated at the upper and lower
boundaries on the floor, n1 and nM are unit vec-
tors of the normal with components n1x, nMx and
n1y, nMy, which are interior to the regions under
study, and integration is performed along the cut of
the boundaries by the z = 0 plane. Recalling that
|S−

j | = 0.5Re E−

j × H−∗

j , where E−

j and H−

j are
complex vectors of the electric and magnetic fields
calculated on the floor at the j = 1, M boundary,
and X∗ denotes complex conjugate of X , we open
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the vector and dot products for the TE and TM
polarizations under the integral signs in Eq. (4):

ẼA(TE) = 0.5Re[

∫

Γ1

E−

z (H−∗

x cosβ−H−∗

y cosα)dl

−
∫

ΓM

E−

z (H−∗

x cosβ − H−∗

y cosα)dl],

ẼA(TM) = 0.5Re [

∫

Γ1

H−∗

z (E−

x cosβ − E−

y cosα)dl

−
∫

ΓM

H−∗

z (E−

x cosβ − E−

y cosα)dl]. (5)

As follows from Maxwell’s equations:

dE−∗

z /dn = (−H−∗

y cosα + H−∗

x cosβ)/(iωµl),

dH−

z /dn = (−E−

y cosα + E−

x cosβ)/(iωǫl), (6)

where ǫl and µl are the electric permittivity and
magnetic permeability of layer l, ω is the frequency
of the electromagnetic field, and i is the imaginary
unit. Substituting Eq. (6) in Eq. (5), we obtain:

ẼA(TE) = 0.5Re [

∫

Γ1

1

iωµ1

dE−∗
z

dn
E−

z dl

−
∫

ΓM

1

iωµM

dE−∗
z

dn
E−

z dl],

ẼA(TM) = 0.5Re [

∫

Γ1

1

iωǫ1

dH−
z

dn
H−∗

z dl

−
∫

ΓM

1

iωǫM

dH−
z

dn
H−∗

z dl]. (7)

In studies of electromagnetic field losses at the
grating, ẼA, it should be normalized against the
heat power losses of the incident wave Ẽi

A within a
plane element of area bounded by the same planes
x = 0, x = d and z = 0, z = 1 and having an
optical constant

√
ǫ1µ1 equal to that of medium 1.

By canceling the same factor exp(−iαi
0x) in the ex-

pressions for the incident and diffracted fields in a
diffraction problem [9] and taking account of the
plane surface of derivation, the explicit forms of
the incident field of unit amplitude and of its nor-
mal derivative can be simplified to exp(−iβi

0y) and
exp(−iβi

0y)(−iβi
0), respectively, where αi

0 and βi
0

are x and y components of the incident wave vec-
tor. Substituting this in Eq. (7) and recalling the

boundary conditions we come to

Ẽi
A(TE) = 0.5

βi
0d

ωµ0

, Ẽi
A(TM) = 0.5

βi
0d

ωǫ0
. (8)

Using (7) in conjunction with (8), the normalized
expressions for energy absorbed in the grating are
given by:

A(TE) =
ẼA(TE)

Ẽi
A(TE)

=
1

βi
0d

Re [

∫

Γ1

iµ0

µ1

dE−∗
z

dn
E−

z dl

−
∫

ΓM

iµ0

µM

dE−∗
z

dn
E−

z dl],

A(TM) =
ẼA(TM)

Ẽi
A(TM)

=
1

βi
0d

Re [

∫

Γ1

iǫ0
ǫ1

dH−
z

dn
H−∗

z dl

−
∫

ΓM

iǫ0
ǫM

dH−
z

dn
H−∗

z dl]. (9)

Recalling that Re X = Im iX , Eq. (9) for the uni-
versal field components u±

j and their normal deriva-

tives v±j (u+

j and v+

j calculated at the boundary on
the ceiling) can be recast to the form

A =
1

βi
0d

Im [

∫

Γ1

u+

1 v+∗

1 dl − c

∫

ΓM

u−

Mv−∗

M dl], (10)

where c = µ0/µM is for the TE, and c = ǫ0/ǫM , for
the TM polarization. Eq. (10) for the absorption
of an electromagnetic field by a multilayer grating
coincides with the expression reported in [7] and de-
rived by applying the Green’s formula to boundary
functions for the contours in the upper and lower
media. By definition, the first integral in Eq. (10)
is 1 − R, and the second, T , and it vanishes if the
lower medium is absorbing [9] or the lower bound-
ary is perfectly conducting. The sum A + R + T is
actually the energy balance for an absorbing grat-
ing, and the extent to which it approaches unity is
a measure of the accuracy of a calculation.

5 Examples of diffraction problem calcu-

lations for λ/d << 1

Three types of small λ/d ratio problems are known
from optical applications: (a) shallow gratings
working in the x-ray and EUV ranges, both at
near-normal and grazing incidence angles, (b) deep
echelle gratings with a steep working facet illumi-
nated along its normal by light of any wavelength,
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Figure 5: Specular TE reflectance of Au mir-
rors calculated for σ = 1.5 nm and different ζ
for λ = 0.154 nm vs. angle of incidence.

and (c) rough mirrors and gratings in which rough
borders can be represented by a grating with a large
period d, and which contain a few or a large num-
ber of random asperities illuminated at any possible
angle and wavelength [10]. To study the scatter-
ing intensity with the use of a forward electromag-
netic code, one should first of all generate statisti-
cal realizations of the border profiles of the struc-
ture under investigation, then calculate the scatter-
ing intensity for each realization and, finally, aver-
age the intensities over all the realizations. To al-
low randomization of grating borders with a Gaus-
sian height distribution and a Gaussian correlation
function, the known spectral method was extended
to include the case of non-plane interfaces pre-
scribed by arbitrary polygons [10]. Non-plane bor-
ders are characteristic also of self-assembled low-
dimensional quantum structures defined by other
asperity statistics. For an investigation of specular
and diffuse x-ray scattering from multiple ensem-
bles of quantum dots in the MIM frame, the Reader
is referred to Ref. [10].

An example of cases (a) and (c) combined can be
found in [2, 10]; it is essentially a 20-pair Mo/Si-
coated 4200 groove/mm EUV flight grating of the
Sun mission Hinode. The physical model with a
stack of plane interfaces over one non-planar inter-
face can be used to advantage, due to its good accu-
racy and very high speed, for case (a) [3]. As to case
(b), for echelles in which resonance on the work-
ing facet plays a predominant role, it is often, but
not always, possible to ’rotate’ the layer stack and
consider a diffraction problem with the plane stack

parallel to the working facet rather than to the sub-
strate. There are no mathematical approximations
in this model except the numerical implementation.
This approach generally works [3] in the case of
thin layers (layer thickness-to-wavelength < 0.1),
an area hard to cope with for SIMs. However, the
sophisticated approach developed for single-coated
echelles in [1] is fast with a high rate of convergence.

A gold x-ray mirror for use at grazing incidence
near the angle of total external reflection was cho-
sen as an example of case (c). The difference be-
tween the asymptotic and rigorous approaches can
be clearly seen in Fig. 5 which plots the calcu-
lated specular TE reflectivity of Au surfaces with
rms roughness σ = 1.5 nm vs. angle of incidence
for λ = 0.154 nm and for different values of the
lateral correlation length ζ. The reflection coeffi-
cients calculated rigorously in the low-intensity do-
main for ζ = 10µm are approximately twice those
obtained with the Debye-Waller factor [10] which
is commonly used in this region and derived in
the frame of the first-order Born approximation
(BA) [5]. For ζ = 0.1µm, the excess is already
about fourfold. By contrast, close to the critical
angle the rigorous data obtained for ζ = 0.1µm lie
∼ 20% below the values calculated for this region
with the Nevot–Croce factor [10], which is derived
in the frame of the first-order distorted-wave BA
(DWBA) [5]. For ζ = 10µm, in the region of high
intensities, the differences are still larger, to reach
finally a few hundred %. The behavior of reflec-
tivity with ζ illustrated in Fig. 5 matches qualita-
tively with the results obtained in the frame of the
second-order DWBA [11] while differing in quan-
titative estimates, particularly for values of ζ for
which second-order DWBA does not work. To take
into account the fine structure of the roughness in
the above example, one has to use ∼ 100 asper-
ities per d, average over 9–25 random boundaries
and assume N = 400 ÷ 3200. For ζ = 10µm and
d = 1500µm, λ/d ≈ 1.E−7, a value too small to be
dealt with in any rigorous numerical approach. For
MIM, however, this formidable scattering problem
is found to be convergent and yields quite accurate
results (Energy balance error ∼ 1.E − 5) for only
N = 400 and no speed-up techniques invoked. The
time taken up by one computation on a workstation
with two Quad-Core Intelr Xeonr 2.66 GHz pro-
cessors, 8 MB L2 Cache, Bus Clock 1333 MHz and
16 GB RAM, is about one minute when operating
on Windows Vistar Ultimate 64-bit and employ-
ing eightfold paralleling.
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6 Conclusion

The MIM works reliably and fast for very low λ
or λ/d in the x-ray–EUV range, despite the small
number of collocation points per wavelength used
in the approach (it is also true for echelles). For
example, if a period includes 50 collocation points
and λ/d = 1.E − 3, there is only 5.E − 2 point
per wavelength. In this case, however, the profile
depth, the bi-layer thickness, and the incident ra-
diation wavelength must be of the same order of
magnitude. The same rule for reaching the max-
imum diffraction efficiency is, on the whole, valid
for longer wavelengths too.

The accurate results obtained by the rigorous
method for the intensity of scattering from gratings
and rough mirrors may differ substantially from
those derived using known asymptotics and approx-
imate approaches. These differences may give rise,
for instance, to wrong estimates of rms roughness
and correlation length if the latter are determined
by comparing experimental data with calculations.
Besides, the rigorous approach permits taking into
account any known roughness statistics.

In the cases of shallow gratings and mirrors work-
ing at very small λ/d ratios, introducing speed-up
terms produces an adverse numerical effect because
of the ensuing uncontrolled growth of coefficients
in analytically improved asymptotic estimations.
With all speed-up options turned off, it is often
possible to obtain for the most difficult problems
surprisingly good convergence at orders of practi-
cal interest, and an energy balance very close to
1. However, treatment of such situations remains
mostly a kind of art.
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