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It is shown that taking into proper account certain terms in the nonlinear

continuum equation of thin-film growth makes it applicable to the simulation of

the surface of multilayer gratings with large boundary profile heights and/or

gradient jumps. The proposed model describes smoothing and displacement of

Mo/Si and Al/Zr boundaries of gratings grown on Si substrates with a blazed

groove profile by magnetron sputtering and ion-beam deposition. Computer

simulation of the growth of multilayer Mo/Si and Al/Zr gratings has been

conducted. Absolute diffraction efficiencies of Mo/Si and Al/Zr gratings in the

extreme UV range have been found within the framework of boundary integral

equations applied to the calculated boundary profiles. It has been demonstrated

that the integrated approach to the calculation of boundary profiles and of the

intensity of short-wave scattering by multilayer gratings developed here opens

up a way to perform studies comparable in accuracy to measurements with

synchrotron radiation, at least for known materials and growth techniques.

1. Introduction

Recent progress in fabrication of multilayer X-ray diffraction

gratings with boundaries of a specified shape and subatomic

roughness stems primarily from the holographic and litho-

graphic techniques employed in their manufacture, as well as

from the advances achieved in materials chemistry, and the

considerable steps forward accomplished in vacuum tech-

nology and methods developed for preparation and processing

of Si plates and in nanometrology. The urgent need to

continue the relevant research is made obvious by the pressing

demands for development of novel high-resolution and effi-

cient components of optical and electronic instrumentation in

such areas as 6.X nm lithography, X-ray free-electron lasers

(XFELs), resonant inelastic X-ray scattering, soft X-ray and

extreme ultraviolet (EUV) astrophysics, X-ray microscopy etc.

Comparison of the scattering intensities measured with

sources of synchrotron radiation (SR) and XFELs with the

results of calculations based on rigorous methods becomes an

ever more pressing issue for short-wave optics.

It should be noted that in quantitative investigation of the

evolution of thin-film boundary profiles one widely accepts

microscopic methods, primarily transmission electron micro-

scopy (TEM), atomic force microscopy (AFM) and near-field

scanning optical microscopy. The first of these is fairly

expensive and destructive, while the other two do not allow

determination of inner layer boundary profiles of the sample

prepared. Besides, microscopic methods are applicable only to

studies of local characteristics of the structure formed.

One of the most universal approaches to investigation of

the layer morphology and composition is based on reflecto-

metry (scatterometry), including its short-wave version, which

permits one to determine with a high precision and in an

integral way the characteristics of the nanorelief of practically

any thin-film material (Pietsch et al., 2004). Of particular

importance for the solution of ill-conditioned and nonuni-

quely solvable inverse problems in reflectometry (Goray,

2011) are the availability of (1) a universal and rigorous

method for solution of the direct problem and (2) adequate

information on the retrieved relief and/or refractive indices of

the relevant materials for use as a starting approximation.

Application of a modified method of boundary integral

equations (MIM) (Goray et al., 2006; Goray, 2010a,b) to

analysis of the effect boundary profiles of gratings and mirrors

with complicated rough interfaces produce on the X-ray

scattering intensity is a novel approach based on the optical

theory of continuous media, i.e. on the solution of Maxwell’s

equations involving rigorous boundary conditions and radia-

tion conditions. The MIM equations revealed that the inten-

sities of X-ray scattering at boundaries with periodic and

random asperities of the relief may differ considerably (by a

few times) from the values derived with the use of various

approximate models. It was found that this method operates

equally well with nano-roughnesses of any kind and shape

(Goray, 2009) that obey arbitrary statistics of distribution (not

necessarily periodic or Gaussian). The present study focuses

on the most essential differences of the MIM from the other

available methods of boundary integral equations, as well as
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on the specific features of its application to the analysis of the

intensity of short-wave scattering by mirrors and gratings. For

a comprehensive description of the MIM the above references

should be consulted.

In calculation of the intensity of X-ray scattering by

multilayer gratings, one customarily resorts to layer boundary

profiles obtained in scaling an initial to the final profile in the

framework of various relevant models (Voronov, Anderson,

Cambie, Gullikson et al., 2011; Peverini et al., 2007; Stearns et

al., 1998). Quite frequently, these calculations are not based on

accurate information even on the initial or final boundary

profile, which markedly complicates fitting the profiles of inner

boundaries (Goray & Seely, 2002). This approach also does

not permit one to account for (i) source noise, a factor that

significantly influences the growth process, (ii) displacement of

the large-scale grating profile initiated by profile smoothing or

a change of the angle at which material is deposited on the

grating, and (iii) variation of the surface relaxation parameters

in the course of growth.

In the present study, to simulate the evolution of a thin-film

profile, the continuum approach was employed because, in

contrast to the discrete and dynamic methods, it provides the

possibility of calculating the relief evolution over large

temporal, �103 s, and spatial, �102 mm, scales. Besides, the

continuum model permits one to study directly how the source

noise and various nonlinear and geometric effects influence

the growth process. Thus, for complex profiled surfaces, such

as, for instance, randomly rough multilayer X-ray�EUV

diffraction gratings, we believed it reasonable to choose a

complex theoretical approach, which largely substitutes for

experiment and permits one to calculate both the evolution of

the boundary profile of layers and their optical response by

short-wave reflectometry. The goal pursued by this study

includes a theoretical investigation and computer simulation

of boundary growth and of the intensity of short-wave scat-

tering by multilayer gratings, which draw from the method

proposed by us. In the rigorous calculations of the diffraction

efficiency �(#) in the #-th order of multilayer gratings one

makes use, for the first time, of the boundary profiles obtained

by simulation of the growth of their layers. We have proposed

and investigated the continuum equation describing the

evolution of the profile of both the small-scale (random nano-

roughness) and the large-scale (grating) relief.

This paper is organized as follows. x2 presents the model of

growth of thin films on profiled surfaces which is based on the

continuum approach developed for the purpose, taking into

account the nonlinear terms of the kinetic equation. x3
outlines briefly a rigorous theory of scattering from multilayer

gratings with arbitrary random noise. x4 deals with the theo-

retical efficiency results obtained for multilayer sawtooth

gratings with simulated Mo/Si and Al/Zr boundaries and

compares them with measurements performed on an SR

source.

2. Model of thin-film growth on profiled surfaces

In the context of the proposed continuum approach, the

variation of the film profile (boundary) height h with time t at

point r on the surface is described by a kinetic equation taking

into account various physical processes (Pellicione & Lu,

2007).

2.1. Mechanisms of growth and relaxation (smoothing) of a
thin-film profile

Evolution of the boundary profile of a growing thin film is

governed by two processes, to wit, deposition which translates

into an increase of the profile height reckoned from the initial

level, ho, and relaxation which smoothes asperities on the film

surface. Surface relaxation is driven by the system (thin film)

tending to attain in the course of growth a thermodynamic

state in which its chemical potential would be the same at all

points, r, of the surface. Among the main relaxation

mechanisms are surface diffusion, evaporation–condensation

and bulk diffusion (Pellicione & Lu, 2007; Mullins, 1957). For a

given material system, the main mechanism of relaxation on

the surface is governed by the growth conditions (substrate

temperature, rate of deposition etc.), because the rates of

diffusion and evaporation depend on the temperature and

concentration of adatoms on the substrate. Migration barriers

for the diffusion of atoms in the bulk of a film are higher than

those on its surface and therefore bulk diffusion affects the

variation of the film profile much less than surface diffusion

does. Hence, for the sake of simplicity we are going to disre-

gard bulk diffusion in what follows.

We assume the surface to be isotropic and two dimensional,

in other words, that h can be represented by a function of

coordinate x and time t. In the simplest case, the rate of height

variation @h(x, t)/@t in relaxation by the evaporation–conden-

sation mechanism can be written in the form (after Mullins,

1957)

@h=@t ¼ ��2f1 þ rhðx; tÞ½ �2g1=2KðxÞ ð1Þ
and, if relaxation occurs by the diffusion mechanism,

@h=@t ¼ �4f1 þ rhðx; tÞ½ �2g1=2 @2KðxÞ=@x2
� �

: ð2Þ

In equations (1) and (2), �2 and �4 are parameters defining the

rates of the evaporation/condensation and the diffusion

processes, respectively, and K(x) is the local surface curvature.

The actual form of an equation intended to describe the

profile variation with time depends on the physical processes

occurring at the surface of a film and in its bulk. In particular,

if the substrate surface has steps of different height which

exchange atoms, one should use other expressions for the

diffusion terms. In a general case, the equation for the profile

evolution can be written as

@hðr; tÞ=@t ¼ gðr; tÞ þ f rhðr; tÞ;r2hðr; tÞ; . . .� �
: ð3Þ

Here g(r, t) is the stochastic function defining the flux of atoms

onto the film surface. While the actual form of the g(r, t)

function depends on the type of the source, in most cases one

can, however, assume the value of the atom flux to fluctuate

about the average value hg(r, t)i = I0, with the flux fluctuations

I (the noise) being uncorrelated:
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h�gðr; tÞ�gðr0; t0Þi ¼ I�ðr� r0Þ�ðt � t0Þ; ð4Þ
where � is Dirac’s delta function. The function f in equation

(3) governs relaxation of the film surface and represents

actually a sum of linear, rnhðr; tÞ, and nonlinear,

rl rnhðr; tÞ½ �k� �
, terms, where l, k, n are positive integers. In

each particular case, the specific form of f depends on the

actual physical processes at work in the system.

We next consider the growth of multilayer gratings for use

in X-ray optics in the framework of the continuum approach.

2.2. Kinetic model and simulation of the growth of rough
multilayer gratings employed in short-wave optics

Fabrication of multilayer gratings for X-ray–EUV optics

applications requires close control of the shape and roughness

both of the lower and the upper boundaries and of the

interface boundaries separating the layers. The intensity of

short-wave scattering from such multilayer structures is

influenced both by the small-scale relief created by source

noise and the substrate not being perfect and by the large-

scale pattern of groove facets. Therefore in a theoretical study

of the evolution that the boundary profiles undergo in multi-

layer gratings particular attention should be focused on an

exact numerical simulation of the growth process to properly

take into account the above features.

The angle ’ of the working face in typical high-frequency

gratings with a blazed facet which are employed in short-wave

optics is a few degrees, and the opposite angle �, at the base of

the triangle, several tens of degrees. In this case, the equation

for evolution of the surface profile for the two mechanisms of

surface relaxation [see equations (1) and (2)] can be written as

@h=@t ¼ gðx; tÞ � �2f1 þ rhðx; tÞ½ �2g1=2KðxÞ
þ �4f1 þ rhðx; tÞ½ �2g1=2 @2KðxÞ=@x2

� �
: ð5Þ

Simulation of the process of multilayer grating growth should

take properly into account not only local curvature but the

angle of incidence of the atomic (ion) beam as well. This is

because the grating groove geometry may produce nonuni-

form deposition of material on the substrate as a result of

shadowing effects (Voronov et al., 2010). To reduce the effect

of nonuniform deposition on the process of growth, the angle

between the incident atomic beam and a growing grating

groove facet should be close to 90�. In real growth equipment,

however, it is extremely difficult to attain optimal deposition

angles. Therefore in order to reduce the shadowing effects as

much as possible, one resorts to predominant deposition on

the nonworking facet of the groove, which is inclined to the

substrate plane at a significantly larger angle.

Let us calculate now deposition flows striking a blazed

profile assuming the atom beam to strike the substrate plane at

an angle �, with � > ’. To leave the working facet unshadowed,

the condition � > ’ accepted in practice should be met. This

condition translates for the number of atoms deposited on the

working facet, disregarding noise, into

g ¼ I0 sin½�� ’ðx; tÞ�; ð6Þ

where ’(x, t) is the inclination of the working facet at the point

with coordinate x at time t, ’(x, t) = arctan(rh). Then for the

flux of atoms onto the nonworking facet we obtain

g ¼ I0 sin½�þ �ðx; tÞ�; ð7Þ
where �(x, t) is the inclination of the nonworking facet at point

x at time t, �(x, t) = arctan( rhj j).

Another significant factor capable of affecting noticeably

the roughness of multilayer gratings is the difference in the

magnitude of the relaxation parameters for the materials

forming the layers. To cite an example, surface diffusion of

material 1 over the layer made of material 2 may be consid-

erably lower than that of material 2 over the surface of a layer

of material 1. Note also that the relaxation parameters may

vary in the course of growth; indeed, the near-surface layer of

the growing grating may become heated under magnetron

sputtering, an effect bringing about variation of the diffusion

coefficients and, hence, of the relaxation parameters as well.

Besides, large-scale roughness may end up in shadowing of the

neighboring parts of the surface, thus altering the process of

growth of the film in its immediate vicinity. One could mention

here other physical chemical processes as well, whose account

may be found necessary in the particular conditions of the

technology and equipment employed.

3. Rigorous theory of scattering from multilayer
randomly rough gratings

The MIM theory will be outlined here necessarily briefly,

because its main parts, including specific aspects of a rigorous

solution of short-wave diffraction problems (with a small ratio

of wavelength � to grating period d or correlation length �),

are discussed in considerable detail by Goray and co-workers

(Goray et al., 2006; Goray, 2010a,b). The electromagnetic

formulation of the problem of diffraction by a grating repre-

sented by an infinite periodic structure reduces to a system of

Helmholtz equations for the z components of the electric and

magnetic field in <2, whose solution is quasi-periodic in the x

direction, is described by radiation conditions in the y direc-

tion and satisfies rigorous boundary conditions at the inter-

faces between different materials. A multilayer grating can

have a fairly large number of boundaries, up to a few thousand

for applications in the hard X-ray range. In the case of classical

diffraction, when the wavevector of the incident wave is

perpendicular to the z direction, the system breaks up into two

independent problems for the two main polarization states,

whereas for conical diffraction the boundary values of the z

components of the fields and their normal and tangential

derivatives are coupled (Goray & Schmidt, 2010, 2012). The

grating diffracts the incident wave into a finite number of

outgoing plane waves, the so-called reflected and, possibly,

transmitted modes (orders). The PCGrate-SX (v.6.5, http://

www.pcgrate.com) program computes the energies of the

orders and absorption for an arbitrary number of layers with

boundaries of various types, including polygonal ones derived

from measurements or growth simulation.

The effect of random roughness scattering on the grating

efficiency can be rigorously taken into account with a model in

X-ray diffraction and imaging
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which an uneven surface is represented by a grating with a

large d, which includes an appropriate number of random

asperities. PCGrate analyzes the complex structures which,

while being multilayer gratings from a mathematical view-

point, are actually rough surfaces for d >> �. If � ’ � and the

number of orders is large, the continuous angular distribution

of the energy reflected from randomly rough boundaries can

be described by a discrete distribution �(#) of a grating

(Goray, 2010a). A MIM study of the scattering intensity starts

with obtaining statistical realizations of profile boundaries of

the structure to be analyzed, after which one calculates the

intensity for each realization, to end with the intensity aver-

aged out over all realizations. By selecting large enough

samples, one comes eventually to properly averaged proper-

ties of the rough surface; however, this approach does not

involve approximations, including averaging by the Monte

Carlo method. The more general case of doubly periodic

gratings (three-dimensional surfaces) may be considered in a

similar way or by expressing the solution of the three-

dimensional Helmholtz equation through solutions of the two-

dimensional equation described below, an approach which

may be resorted to in some cases (Goray, 2011).

Numerical solution of the two-dimensional Helmholtz

equation by any rigorous method is known to involve diffi-

culties for small �/d. While the boundary integral equation

method (Rathsfeld et al., 2006) is usually stable, reliable and

efficient, it is characterized by poor convergence and loss of

accuracy in the short-wave range because quadrature calcu-

lations involve accumulation of errors in the orders. Increasing

the matrix size and improving the calculation accuracy, as well

as application of methods aimed at convergence acceleration,

which are known to operate efficiently in the long- and

medium-wave ranges, end up imposing unreasonably rigid

requirements on computer time and memory for analysis of

gratings in the X-ray and EUV ranges. In the case of

computation of boundaries with a fine structure and depth

h >> � these requirements become still more demanding,

particularly for gratings with a large number of layers. At the

same time, the conventional integral method involves at least

one collocation point per � (the number of collocation points

N specified for one period is the main parameter defining the

accuracy of a method; Goray, 2010a), whereas MIM operates

fast and reliably for N�/d << 1 in short waves. Thus, for

instance, for N = 1000 and �/d = 10�7, MIM uses only 10�4

points per �. In this case, however, the effective boundary

depth hcos	 (	 is the angle of incidence on the grating reck-

oned from the substrate normal), the multilayer coating

period � and � should be of the same order of magnitude, at

which the efficiency reaches high values in a specific order.

This conclusion is applicable also both to echelles operating at

any � and to gratings designed for use over a longer-wave

range (Goray, 2010b).

4. Simulation of the multilayer grating boundary
growth and of the efficiency

Drawing from the theoretical approaches proposed in xx2 and

3, we are passing on now to a study of the growth of layers of

multilayer gratings to demonstrate the effect of boundary

topology in a continuum film on spectral efficiencies.

Diffraction gratings on blazed-profile Si substrates are fabri-

cated by interference or electron lithography and selective

etching in KOH of Si plates cut at an angle ’ (Voronov et al.,

2010; Voronov, Anderson, Cambie, Cabrini et al., 2011;

Voronov, Gawlitza et al., 2012; Voronov, Anderson et al.,

2012). While fabrication of gratings of a large size with d �
200 nm for the short-wave range shows considerable promise,

realization of the available design potential requires that the

relevant technology produces a grating profile close to the

ideal triangular geometry and coatings made up of tens or

hundreds of atomic layers with subatomically smooth

boundaries. Profile smoothing, an effect which becomes

manifest in deposition of multilayer coatings and is of crucial

importance for short-period gratings, is an essential factor in

the problem of reducing �. Progressing to ever shorter periods

with d � 200 nm is impossible without first determining the

effect boundary parameters exert on the efficiency, the easiest

way to which lies through simulation of boundary growth and

scattering intensity.

The growth of multilayer blazed-profile gratings was studied

as applied to magnetron and ion-beam sputtering. Let us

consider a two-dimensional problem, which appears only

natural for classical gratings with a cylindrical groove

geometry in space. The first step consisted in simulation of the

process of growth for a multilayer grating realized on an Si

substrate with a close-to-blazed groove profile. The relaxation

parameters of the model of growth were derived from a least-

squares comparison of the results of measurement with those

obtained from simulation of the upper boundary profiles of

gratings [see equations (1), (2) and (5)]. Next, the profile

boundaries thus obtained were used as input data in calcula-

tion of the intensities of short-wave scattering. The results of

the calculations of �(#) were compared with experimental data

on scattering intensity and, whenever needed, the growth

model parameters were refined. Numerical experiments were

performed for multilayer gratings of two types, Mo/Si and Al/

Zr. For analysis of the profile evolution we consider the

universal equation (5) because, as has been demonstrated in

the conjugate paper devoted to mirrors (Goray & Lubov,

2013), on the one hand, it describes well the growth of Al/Zr

mirrors, while on the other, it allows adequately for local

surface roughness, in other words, it offers a possibility to

simulate the growth of a large-scale grating relief.

4.1. Mo/Si grating

We simulated a grating with d = 136 nm, ’ = 6� and 30 pairs

of Mo/Si coating layers, for which a record high �(+2) = 0.288

was measured in the SR beam with � = 13.6 nm and 	 = 11�

(Voronov, Gawlitza et al., 2012). The Mo/Si coating prepared

by ion-beam deposition had � = 7 nm, and the ratio of the Mo

layer thickness to � is �Mo = 0.45. To study the effect of the

substrate and of the relaxation parameters (5) on the profile

variation of growing boundaries, we used averaged AFM

measurements with 137 points of the Si substrate and upper

boundary profiles of the multilayer grating. To take into

X-ray diffraction and imaging
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account adequately the noticeable transformation of the

boundary profiles during deposition of a multilayer coating

and to attain the required accuracy of the solution of equation

(5), the growth simulation program made use of the following

parameters: I0 = 0.6 nm s�1, �2(Mo) = 0.3 nm s�1, �4(Mo) =

0.5 nm3 s�1, �2(Si) = 0.3 nm s�1 and �4(Si) = 1.5 nm3 s�1. The

model deposition rate corresponded to the average deposition

rate in the experiment (Voronov, Gawlitza et al., 2012).

Relaxation parameters �2 and �4 were chosen in such a way as

to reproduce the final (upper) boundary profile of the multi-

layer grating (Voronov, Anderson, Cambie, Gullikson et al.,

2011) and to achieve the best coincidence of the experimental

and calculated efficiencies.

It was assumed that the flow of atoms strikes the grating

vertically. The refraction indices for Mo and Si were taken

from Henke et al. (1993) (http://henke.lbl.gov/optical_constants/).

To take into account random roughness and interdiffusion, in

this particular example we employed Debye–Waller-type

amplitude factors (
Si–Mo = 0.4 nm, 
Mo–Si = 1.2 nm) similar to

those used for plane interfaces (Pietsch et al., 2004; Goray,

2010b).

The results of the calculations of the layer boundary profiles

conducted with the given parameters and presented graphi-

cally in Fig. 1 revealed a certain smoothing of the profile top

and groove, with the profile itself shifting to the left. This

result is in a good agreement with the experimental data. The

rigorous model of � calculation, combined with an approx-

imate account of the effect of random boundary roughness,

demonstrate a good agreement of the efficiency in the main

diffraction orders with an experiment performed on the SR

beam in the wave range under study, 13.1–13.8 nm (Fig. 2).

The efficiencies obtained at other incidence angles likewise

were found to match pretty well, which lends credence to the

multilayer grating growth model chosen. A more accurate

correlation of the results of measurements with efficiency

calculations performed throughout the operating wavelength

and incidence angle ranges can be performed by refining the

boundary model, as well as by a rigorous account of the

random roughness contribution. The results of the above

calculations reveal a good convergence, and to simulate � of a

grating with piecewise-linear boundaries with an accuracy of

not worse than 0.01%, which was estimated from the energy

balance, one would need N = 200 per boundary. The time

expended to calculate one point is �40 s of operation on a

low-end workstation with two Quad-Core Intel Xeon

processors operating at a clock frequency of 2.66 GHz, a bus

clock frequency of 1333 MHz, and with 16 GB of RAM.

4.2. Al/Zr grating

The most difficult to simulate is an EUV grating with d =

100 nm, ’ = 6� and 20 pairs of Al/Zr layers deposited by

magnetron sputtering. A comparison of calculated with

measured reflection coefficients of a multilayer mirror

(witness) revealed that the parameters �Zr = 0.4 and � =

10.43 nm, incorporated in a model of multilayer Al/Zr grating

coating, correlate well with the growth values and that the

average interface roughness can be defined by 
 ’ 0.9 nm

(
0 ’ 0.4 nm, �0 = 10 nm) (Voronov, Gawlitza et al., 2012;

Voronov, Anderson et al., 2012). The data obtained in this

comparison argue for �90% TE-polarized incident radiation

(intensity).

To study the influence exerted by the substrate, relaxation

parameters [see equation (5)] and deposition conditions on

variation of the profile of growing boundaries, we resorted to

averaged AFM measurements of the profiles of the Si grating

substrate and of the upper boundary of a multilayer grating

with ten periods and 1000 points. Data obtained in AFM and

TEM measurements were taken from Voronov, Gawlitza et al.

(2012) and Voronov, Anderson et al. (2012). Al/Zr gratings

X-ray diffraction and imaging
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Figure 1
Boundary profiles of a grating with a period of 136 nm, blaze angle of 6�

and 30 pairs of Mo/Si coating layers with period � = 7 nm. See x4.1 for the
growth parameters used. For the sake of convenience, not all of the
boundary profiles are presented.

Figure 2
Spectral efficiency of grating orders with parameters as specified for Fig. 1
plotted for a radiation incidence angle of 11� near the wavelength of
13.5 nm: lines – present calculations; markers – measurements with SR
[after Voronov, Gawlitza et al. (2012) and courtesy of LBNL].
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exhibited a specific feature of growth in that they underwent a

noticeable transformation of the boundary profiles, to wit, a

decrease of the profile height (by about three times for the

upper boundary), intense smoothing and a shift of the profile

top to the right (Fig. 3). This variation of the profile is in

marked contrast to that of Mo/Si gratings, whose profile varies

substantially less during growth and shifts to the left (Fig. 1).

This can be traced to the inclined geometry of the target

material deposition employed in the relevant equipment to

prevent shadowing (Voronov et al., 2010). Simulation of the

growth of Al/Zr gratings suggests that the shift of the profile

top to the right results from the nonuniformity of the material

flows deposited onto the working and nonworking facets of

the blazed profile, which is caused by the atomic beam striking

the substrate plane at an angle other than 90� (see x2.2).

Significant smoothing of the boundary profile and a shift of the

profile top to the right was observed to occur in simulation of

growth conducted with the following parameters: I0 =

0.6 nm s�1, �2(Zr) = 0.2 nm s�1, �4(Zr) = 5.0 nm3 s�1, �2(Al) =

0.22 nm s�1, �4(Al) = 7.0 nm3 s�1, � = 78�. Growth parameters

were chosen in a similar way as for the Mo/Si grating, taking

into account additionally an inclination of the deposition flux

from the substrate normal [see x2.2, equations (6) and (7)].

A rigorous approach employed to take into account the

contribution arising from random roughness incorporated in

the growth model brings about a decrease in the order effi-

ciency, which was determined by means of PCGrate in the

approach described in x3.

The refraction indices for Al were taken from Palik (1985)

and those for Zr from Henke et al. (1993) because the relevant

data for Zr are not given by Palik (1985). As established

earlier (Seely et al., 2004; Le Guen et al., 2011), in the wave-

length range of interest, 17–22 nm, the refraction indices of

some materials derived from the approach developed in

Henke et al. (1993) may be not accurate enough.

The complex grating model, taking into account the effects

of source nonuniformity, the growth kinetics of deep asym-

metrical boundaries with large gradients, and the random

roughness of boundaries with varied r.m.s. and correlation

lengths, demonstrates very good correlation of � in the main

diffraction orders with the data obtained on the SR source for

a number of incidence angles and wavelengths (Fig. 4). For the

extreme case (not shown) measured at 	 = 36� and � =

17.2 nm, the discrepancy between the values of efficiency

measured for the main diffraction orders by Voronov,

Anderson, Cambie, Cabrini et al. (2011) and those obtained in

our simulation is not over 5%. The match revealed for other 	
and � likewise turned out to be quite good, particularly if one

takes into account the complexity of the boundary model

employed, the intermixing between layers and the absence of

reliable values for the refractive indices of Zr in the wave-

length range studied. As for the calculations discussed here,

the results exhibit good convergence, with N = 400 required

for simulation of � of a grating with polygonal, randomly

rough boundaries, with an error of �0.01% evaluated from

energy balance considerations. The time required for the

calculation of efficiencies for one � is about five minutes on

the workstation mentioned.

5. Conclusion

This study has been the first to demonstrate that correct

simulation of the growth of boundaries in multilayer gratings

with a large height and jumps in the profile gradient requires

precise knowledge of the local surface curvature and of the

nonuniform pattern of deposition of the material on the

substrate. The efficient algorithms and the potential, fed into

the vector electromagnetic code PCGrate, made it possible to

study, with a standard PC, diffraction gratings with the use of

data collected in simulation of boundary profile growth, and to

obtain theoretical results offering the possibility of predicting

the X-ray and EUV efficiency with an accuracy (within a few
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Figure 3
Boundary profiles of a grating with a period 100 nm, blaze angle 6� and 20
pairs of Al/Zr coating layers. See x4.2 for the growth parameters used. For
the sake of convenience, not all of the boundary profiles are presented.

Figure 4
Spectral efficiency of grating orders with parameters as specified for Fig. 3,
plotted for a radiation incidence angle of 11�: lines – present calculations;
markers – measurements with SR [after Voronov, Anderson, Cambie,
Gullikson et al. (2011)].
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%) competing with that typical of measurements performed

with SR for chosen samples.

It is worth noting that a good agreement between calculated

and experimental values of spectral efficiencies of different

diffraction orders obtained at different incidence angles can

be achieved if, and only if, all of the simulated boundary

profiles match perfectly with the experimental ones. Since

electromagnetic computations of the efficiencies are

performed within a widely proved rigorous method and

compared with accurate measurements using SR, it can be

concluded that the developed continuum model is also correct

and allows one to fit a growth process adequately. The

proposed numerical simulation permits one to radically cut

the cost of technological processes and measurements on

multilayer diffraction gratings with a desired boundary surface

structure, an approach aimed at reaching values of � close to

the theoretical limit.

The boundary integral equation method developed for

analysis of the intensity of short-wave scattering by multilayer

diffraction gratings can also be applied with considerable

efficiency in studies of various gratings designed to operate in

other spectral ranges, photonic crystals, Fresnel zone plates

and rough mirrors. The model describing growth of multilayer

films can be successfully used, in its turn, in studies of the

growth process in semiconductor structures, more specifically,

superlattices, buffer layers, low-dimensional nanostructures

etc. The studies described here can be readily employed in

designing high-resolution instruments for X-ray spectroscopy

of the Sun and of other cosmic objects, research in the fields of

plasma physics, X-ray lithography, correlation and resonance

inelastic X-ray spectroscopy, and so on.
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