
Spectral separation of the efficiencies of the inside and outside orders
of soft-x-ray-extreme-ultraviolet gratings at near normal incidence

Leonid I. Goray
International Intellectual Group, Inc., P.O. Box 335, Penfield, New York 14526
and Institute for Analytical Instrumentation, Russian Academy of Sciences, Rizhsky Prospect 26,
Saint-Petersburg 190103, Russia

John F. Seelya�

Space Science Division, Naval Research Laboratory, Washington, DC 20375

Sergey Yu. Sadov
Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,
Newfoundland A1C 5S7, Canada

�Received 29 November 2005; accepted 7 August 2006; published online 3 November 2006�

It is shown from both a phenomenological study and exact modeling that the reason for the
experimentally observed substantial �a few angstroms or nanometers� separation in wavelength
between the maxima of the inside �negative numbered� and outside �positive numbered� diffraction
orders of a multilayer-coated grating, operating at near normal incidence and close to the Bragg
condition in the soft-x-ray and extreme-ultraviolet �EUV� regions, is related to the different angles
of deviation of the orders. This wavelength separation is also a feature of uncoated diffraction
gratings, although not clearly noticeable. The widely used approximate approach for calculating the
absolute efficiency, the product of the relative grating efficiency and the reflectance of its multilayer
coating, has until recently been considered accurate enough for the analysis of soft-x-ray and EUV
near-normal-incidence multilayer-coated gratings. The inapplicability of this approximation for the
analysis of the precise positions and shapes of the efficiency curves for the inside and outside orders,
despite the small ratios of wavelength and groove depth to period and the small angles of incidence,
is demonstrated using gratings with realistic groove profiles and operating in the EUV region. The
rigorous modified integral method �MIM�, which is a variant of boundary integral equation methods
and is designed for the calculation of the efficiency of multilayer gratings with arbitrary layer
thicknesses and boundary shapes �including microroughness� and over a wide wavelength range, is
proposed in a general operator formalism. An analysis of a derived simple phenomenological
expression and the exact numerical study indicates that the spectral separation between the inside
and the outside orders grows with increasing either wavelength, angle of incidence, groove
frequency, or diffraction order number �m�. The efficiency modeling carried out with the commercial
program PCGRATE-SX, based on the MIM, gave not only the exact values of the spectral separation
between the inside and outside orders of Mo4Ru6/Be, Mo/Si, and Mo/Y multilayer-coated gratings
with various real groove profiles measured using atomic force microscopy �AFM� but also good
agreement with synchrotron radiation measurements, including high orders as well. To determine
the shapes and positions of efficiency curves in the soft-x-ray-EUV range of close to
normal-incidence bulk and multilayer-coated gratings with real groove profiles �measured by AFM�,
one should use codes based on rigorous electromagnetic theory such as the MIM. The modeling is
important for developing high efficiency and dispersion gratings for high-resolution spectroscopic
studies of laboratory, solar, and astrophysical radiation sources. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2359224�

I. INTRODUCTION

There has been an increasing effort in the development
of near-normal-incidence multilayer interference optics for
soft-x-ray and extreme-ultraviolet �EUV� solar and astro-
physical instruments. Multilayers were applied to various
types of gratings to enhance the grating efficiency, especially
for high-resolution and high dispersion spectroscopy of weak
EUV sources.1 It is now possible to reliably implement
multilayer-coated diffraction gratings in spaceflight and labo-

ratory spectrometers that operate at close to normal incidence
and with high efficiency in the short-wavelength range.2 The
parameters of the multilayer coating and the groove border
profiles are optimized so that the grating has high diffraction
efficiency in a selected wavelength range. Methods for sur-
face metrology,3 such as atomic force microscopy �AFM�,
have advanced significantly in the last few years, driven
largely by the metrology needs for advanced lithographic
processes. The computational design and fabrication of the
multilayer coatings also require accurate knowledge of the
optical constants of layer materials.4 An important part of thea�Electronic mail: john.seely@nrl.navy.mil
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design process for the optimization of a grating’s multilayer
coating and border profiles is a computer code that accu-
rately models the efficiency of the multilayer-coated grating.5

The software should account for the finite conductivity of the
different layers of the coating, the real shape of the borders
�e.g., measured by AFM�, the random microroughness and/or
interdiffusion of the interfaces, and the polarization of the
incident radiation.

The separation in wavelength between the inside �nega-
tive� and outside �positive� order efficiencies in a grating
operating close to normal incidence in the soft-x-ray-EUV
range was experimentally observed1 in the first diffraction
orders of a Mo/Si multilayer lamellar grating with
2400 grooves/mm operating at incidence angles of 10° and
32° �Fig. 1�. The spectral separation of the +1 order and the
−1 order efficiencies was attributed to the different angles of
diffraction. This trend was confirmed in subsequent studies,
including blaze gratings and higher orders.6–8 While
multilayer-coated diffraction gratings designed for operation
near normal incidence in the soft-x-ray-EUV wavelength
range hold the most promise, rigorous numerical modeling of
their efficiency is rather time consuming.9 Such calculations
were considered over a long period of time as problematic
due to weak convergence of numerical solutions and high
requirements for computer memory and performance.10 Grat-
ings working in this wavelength range are characterized by a
large number of propagating orders and the need of account-
ing for the effects of absorption, multiple reflection, multi-

wave scattering, shadowing, and other dynamical effects that
all make using the scalar or other approximate theories
highly questionable.11,12 Reliable absolute efficiency predic-
tions for the relief gratings working in these spectral regions
became possible only after the development of effective ver-
sions of the methods, the well-known differential12,13 and
integral.5,9 References 12 and 13 presented rigorous calcula-
tions based on the differential method for gratings with ideal
sawtooth border profiles with a limited number of coating
layers and only for the case of the TE polarization �in the TE
polarization the electric field vector is perpendicular to the
plane of incidence and in the TM polarization the electric
field vector lies in the plane of incidence, i.e., in the plane
XY—see Fig. 2�. The most universal and precise approach to
an efficiency analysis of multilayer-coated gratings, with real
groove profiles and accounting for microroughness, is a
boundary integral equation method14,15 �BIM� which makes
systematic calculations in the soft-x-ray-EUV wave band
feasible on a personal computer.5,9,16

The present paper represents a unified treatment of the
calculation of the efficiencies using the same improved com-
putational techniques and including, in particular, the effect
of spectral separation of the inside and outside orders which
is characteristic of various soft-x-ray-EUV gratings operating
near normal incidence. Section II describes some aspects of
approximate approaches of diffraction by gratings working at
small wavelength-to-groove-period and wavelength-to-
groove-depth ratios and their limitations. A phenomenologi-
cal study of the wavelength separation of the same number
�m� inside and outside orders is presented. The approximate
expression derived for the separation of orders in wavelength
is compared with the results obtained in rigorous numerical
modeling of the efficiency of bulk, perfectly conductive
lamellar gratings working under near normal incidence at
low wavelength-to-period ratios. References 5, 9, 17, and 18
describe some peculiarities and implementation details of the
modified integral method �MIM�, which is a variant of the
BIM as applied to multilayer-coated gratings working in the
short-wavelength range. Section III of this paper describes

FIG. 1. Measured +1 and −1 order efficiencies vs wavelength of a 2400-
groove/mm multilayer-coated grating operating at angles of incidence of
10° �a� and 32° �b�. The solid curves are the reflectances of the multilayer
coating with 30 Mo/Si periods for the indicated angles of incidence, shifted
to account for the different angles of deviation for the +1 and −1 orders. The
reflectance values were reduced by factors of 0.32 and 0.34 �a� and 0.33 and
0.34 �b� which represent the groove efficiencies in +1 and −1 orders.

FIG. 2. Light diffraction on a grating working in the autocollimation �Lit-
trow� mounting.
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the multiboundary integral solver of the PCGRATE-S�X� code19

in a general operator form, emphasizing details not found in
the literature and important for the present study. An exact
study of the efficiency of three different soft-x-ray-EUV
multilayer gratings with real �AFM-measured� groove pro-
files, including inside and outside order separation in wave-
length, is described in Sec. IV. The measurements of absolute
efficiency using monochromatic synchrotron radiation are
compared with calculations based on the rigorous multi-
boundary MIM. All modeling results covered in this paper
were obtained with a commercial program PCGRATE-SX v.6.1.
Section V is a summary of the paper.

II. PHENOMENOLOGICAL STUDY AND LIMITATIONS
OF APPROXIMATE APPROACHES

A. Asymptotic theory predictions

A specific feature of gratings operating in the short-
wavelength range is their small ratio of vacuum wavelength
� to grating period d. Despite well-known limitations, phe-
nomenological approaches and the scalar theory of
Fresnel-Kirchhoff20 permit one to gain insight into a physical
phenomenon without the costs of numerical modeling. A
grating having the modulation �profile� depth h and the
angles of incidence � �measured with respect to the grating
normal� and diffraction ��m is assumed to operate in scalar
mode in order m if21

�m��/d � 0.2, h/d � 0.1, � � ��m � 0 ° . �1�

The scalar mode does not typically give rise to polariza-
tion effects or anomalies, and the efficiency of a perfectly
reflecting grating is derived from universal curves con-
structed for different groove profiles. Universal curves are
functions of the ratio h /d only, and they are equally appli-
cable to gratings with different periods, groove depths, and
coating materials. The Kirchhoff approximation yields for
the maximum grating efficiency Ep�m ,��, which exists al-
ways for a certain ratio of Littrow wavelength to optimal
groove depth hopt,

22

Ep�±1,�� � 34 % for a sinusoidal profile at

�Lit�±1�/hopt � 3.4,

Ep�±1,�� � 40 % for a lamellar profile at

�Lit�±1�/hopt = 4,

Ep�m,�� = 100 % for a sawtooth profile at

�m��Lit�m�/�d sin �� = 2, �2�

where �Lit�m� is a wavelength in autocollimation ��=−��m
for reflection and the Cartesian sign convention—see Fig. 2�
and � is a blaze angle. Due to conditions �1� the autocolli-
mation regime is always close to normal incidence.

The simple scalar wavelength expression relating the
blaze wavelength �B for non-Littrow mountings to the simi-
lar autocollimation wavelength is

�B�m� = �Lit�m�cos�Dm/2� , �3�

where for the deviation angle

Dm = � + ��m �4�

the position of the maximum on the universal efficiency
curve and its height vary smoothly as the grating operation
deviates from the Littrow mode. Gratings with an arbitrary
�for example, polygonal� groove profile are also character-
ized by an optimum depth, which corresponds to a maximum
in the efficiency curve and is related to the coefficients of the
groove profile expansion in a Fourier series.

To take into account the finite conductivity of the bulk
grating material, one has only to multiply the value of the
efficiency extracted from the universal curve by the Fresnel
reflectance. The absolute efficiency of a soft-x-ray-EUV
single-layer- or multilayer-coated grating in the mth diffrac-
tion order, Ea

l�m ,��, is represented by the product of the
reflectance of a plane multilayer stack in the lth Bragg
order,23 Rl����, and the efficiency of a perfectly reflecting
grating:13

Ea
l�m,�� = Rl����Ep�m,�� , �5�

where ��=� in a general case and ��=�-� for a sawtooth-
profiled grating �the condition in which the incident ray and
the diffraction order m are symmetric with respect to the
working groove facet�. In the case of a sawtooth profile, the
rigorously calculated efficiency of a perfectly reflecting grat-
ing can be replaced by a phenomenological relation based on
geometric considerations �Ref. 24, Eq. �6.3��:

Ea
l�m,�� = Rl�� − ��min�cos ��m/cos �,cos �/cos ��m� .

�6�

A fundamental constraint on the application of the ap-
proach �5� for bulk and multilayer-coated soft-x-ray-EUV
gratings, as well as for gratings with one dielectric coating, is
imposed by the close to normal angle of incidence, which
should not be extremely grazing. For example, the incidence
angle for some bulk gratings should not exceed 40°.22 The
scalar efficiency obtained from Eq. �6� was found to differ
from that calculated using the rigorous differential method
for a multilayer grating working at an incidence angle of
45°.13 The critical value of the angle depends, however, on
the actual grating parameters, the wavelength, the polariza-
tion, and the order number. The incidence angle at which
Eqs. �5� and �6� still hold can in some cases be increased to
70°–80°.12 As presented in Ref. 11, numerous rigorous cal-
culations indicate that Eqs. �5� and �6� are accurate at grazing
incidence only for low-frequency gratings with 300 and
600 grooves/mm. For gratings operating far from normal in-
cidence, another approach was proposed9 which is based on
the product of the reflectance of a plane multilayer stack and
the relative efficiency of a finitely conductive grating speci-
fied by one �substrate� corrugated boundary:

Ea
l�m,�� = Rl����Ea

sub�m,��/Rsub���� . �7�

At the same time, numerous rigorous calculations based
on the differential and integral methods demonstrated the
high accuracy that Eq. �5� provides in predicting the absolute
maximum efficiency in the first and higher orders of a
multilayer grating with an arbitrary groove profile �including
a real profile, e.g., AFM measured� and operating close to
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normal incidence. Obviously, the approach �5� can be valid
only for highly conformal deposited layers, a condition met
primarily in the soft-x-ray-EUV range. It was believed for a
long time to be a very accurate and convenient method for
calculating the absolute efficiency of multilayer, near-
normal-incidence gratings operating in soft-x-ray-EUV wave
bands.

B. A phenomenological analysis of the orders’
wavelength separation

The separation between the inside �m�0� and outside
�m�0� diffraction orders in wavelength for a grating with an
arbitrary groove profile shape can be estimated from Eq. �4�
for any order. We find ��m from the grating equation

sin � − sin ��m = − m�/d �8�

taking into account the smallness of the angles of incidence
and diffraction and substitute this expansion into Eq. �4�:

Dm � 2� + m�/d . �9�

Next we write the difference ��B between the spectral posi-
tions of the maxima in the −�m� and +�m� orders in the form

��B = �B�− �m�� − �B�+ �m��

= �Lit�cos�D−�m�/2� − cos�D+�m�/2�� . �10�

It can be shown by algebra and accounting for the smallness
of the angles of incidence and diffraction that

��B � �m���Lit����/d� . �11�

Equation �11� shows that the spectral separation of the same
number inside and outside orders grows with increasing or-
der number, wavelength, angle of incidence, and grating fre-
quency. Strictly normal incidence does not give rise to order
separation in wavelength.

C. Comparison between phenomenological
and numerical results of spectral orders’ separation
for bulk gratings

Compare now the values of ��B obtained with the ap-
proximate relation �11� with the results of rigorous numerical
modeling. As an illustration, consider gratings with perfect
conductivity and a symmetric lamellar groove profile work-
ing in the TE-polarized soft-x-ray-EUV radiation �the polar-
ization difference between efficiencies is negligible for such
gratings�.

Figure 3 displays the spectral response curves of effi-
ciency in the ±1 and ±5 orders obtained for a 2400-
groove/mm lamellar grating with 2.5-nm-deep grooves and
0.5 land-to-period ratio. The maximum efficiencies in the −1
order lie at a wavelength of approximately 9.8 nm for an
angle of incidence of 10° and at a wavelength of approxi-
mately 8.7 nm for an angle of incidence of 30° �Fig. 3�a��.
As seen from Figs. 3�a� and 3�b�, the wavelength separation
between the efficiency maxima of the inside and outside or-
ders of the same number increases with increasing order
number and angle of incidence, which is consistent with Eq.
�11�. The wavelength separations ��B obtained from Eq.
�11� for the first diffraction order are 0.4 Å for �=10° and

1.1 Å for �=30°. As seen in Fig. 3, all values are in good
quantitative agreement with the separation between the indi-
cated inside and outside orders derived by rigorous calcula-
tions despite the fairly large angles of incidence. This is ac-
counted for by the small values of hopt and, respectively, �Lit

for which Eq. �11� is met with a high accuracy.
Figure 4 presents curves of efficiency in the ±1 and ±3

orders obtained for 1200- and 2400-groove/mm lamellar
gratings with 5-nm-deep grooves and 0.5 land-to-period ratio
at an angle of incidence of 30°. The corresponding first-order
peak efficiencies lie at a wavelength of �17.3 nm �Fig.
4�a��. As seen in Figs. 4�a� and 4�b�, the wavelength separa-
tion between the efficiency maxima of the inside and outside
orders of the same number increases with increasing order
number and decreases with increasing groove spacing in ac-
cordance with Eq. �11�. The wavelength separation ��B ob-
tained from Eq. �11� for the first diffraction order of the
1200-groove/mm grating is 2.2 Å and for the 2400-
groove/mm grating is 4.3 Å. As seen in Fig. 4, the ��B

values obtained using Eq. �11� are about one half the actual
separations between the corresponding plus and minus order
efficiencies yielded by rigorous calculations. This should be
primarily attributed to the large angle of incidence, for which
Eq. �11� is no longer accurate.

A comparison of the examples described in Figs. 3 and 4
for the angle of incidence of 10° �not shown� indicates that
the spectral separation between the same number inside and

FIG. 3. Rigorously calculated ±1 �a� and ±5 �b� order efficiencies vs wave-
length of perfectly conductive 2400-groove/mm lamellar gratings with
2.5-nm-deep grooves and 0.5 land-to-period ratio operating at angles of
incidence of 10° and 30°.
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outside orders grows approximately fourfold when the wave-
length increases by a factor 2, which likewise is in good
accord with Eq. �11�.

The analysis outlined in this section and in Sec. II B
suggests that the wavelength separation of the inside and
outside order efficiencies is related to oblique, close to nor-
mal incidence of light on a grating operating in the short-
wavelength spectral region and to different angles of devia-
tion for these orders. The spectral separation of the inside
and outside orders with equal order number is fitted well by
the approximate relation �11� for small values of the param-
eters in parentheses on its right-hand side. This separation is,
however, fairly small in absolute magnitude and, in view of
the slowly varying efficiency curves of different orders ob-
tained for bulk gratings, is of no particular significance for
this type of grating. By contrast, for multilayer-coated grat-
ings whose efficiency maxima are determined by the Bragg
reflection peaks, the wavelength separation between the in-
side and outside orders is reliably observable in various ex-
periments and is significant. To quantitatively study this ef-
fect as applied to multilayer gratings, one could modify Eqs.
�5�–�7� to correct the angle of incidence � � in order to cal-
culate the reflectance of a multilayer-coated mirror with due
account of the wavelength separation between the same
number positive and negative orders. For example, one could
replace �� by the diffraction angle � �m as was done in Ref. 1
�Fig. 9�a��, by the angle of deviation Dm, or by taking the

geometric mean of the reflectances of multilayer coatings
calculated for the angles of incidence and diffraction.25 Be-
cause of the approximate nature of this approach inherent in
the physical model involved, it can yield a reasonable result
in one case which would fit an experiment while proving
erroneous in another.12 Since the exact outcome is not known
in advance, one should always perform a comparison with
experiment or with rigorous calculations.

III. DYNAMICAL THEORY FOR MULTILAYER
GRATINGS

A. Physical and mathematical models in calculating
multilayer grating efficiency

The efficiency calculations of multilayer-coated gratings
performed in the earlier studies1,6–8 made use of a model
based on Eq. �5� or its refined version �7�. The latter takes
into account the finite conductivity of the substrate and
yields realistic results for both normal and grazing angles of
incidence. While theoretical calculations based on the ap-
proximate physical models �5� and �7� predict quite well the
peak height of the efficiency curves in different orders, they
do not yield the efficiency curve shapes and the noticeable
spectral separation of the inside and outside orders observed
in experiments.

A numerical analysis of the experimentally observed
spectral separation between the inside and outside order ef-
ficiencies of a multilayer grating with a real groove profile
was carried out4 by invoking the rigorous MIM method �Ref.
17� generalized on the multiboundary scheme of integral
equations.18 The exact modeling was performed by use of the
PCGRATE-SX program19 and not only permitted theoretical
validation of the spectral separation between the inside and
outside orders of a multilayer 2400-groove/mm Mo4Ru6/Be
grating with a real �AFM-measured� blazed groove profile
but also provided good agreement with experimental results
covering a wide wavelength range and including higher or-
ders as well. The recently calculated wavelength separation
between the inside and outside order efficiencies of a
multilayer Mo/Si 4200-groove/mm grating with a real trap-
ezoidal groove profile, which was designed for operation in
the EIS spectrometer on the Solar-B spacecraft, was in good
agreement with the synchrotron radiation measurements23 in
two EUV wavelength regions. Precise efficiency calculations
of a 2400-groove/mm Mo/Y grating with a real groove pro-
file operating at 8° incidence in the 9 nm wavelength range
were also reported26 and included the observed significant
separation between the inside and outside order efficiencies.

The PCGRATE-S�X� code, based on the BIM, is used in the
present work to analyze the diffractive properties of single-
layer and multilayer gratings with arbitrary angles of inci-
dence, boundary shapes, and layer thicknesses, including
nonconformal layers and real-profile boundaries. The multi-
boundary solver implemented in PCGRATE-S�X� is based on
the algorithm first described in Ref. 14. A more transparent
and detailed exposition, including a discussion of various
marching schemes that avoid hypersingular potential opera-
tors, is given in Ref. 15. The scheme in our program is the

FIG. 4. Rigorously calcualted ±1 �a� and ±3 �b� order efficiencies vs wave-
length of perfectly conductive 1200 and 2400-groove/mm lamellar gratings
with 5-nm-deep grooves and 0.5 land-to-period ratio operating at an angle of
incidence of 30°.

094901-5 Goray, Seely, and Sadov J. Appl. Phys. 100, 094901 �2006�

Downloaded 03 Nov 2006 to 132.250.166.45. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



original one of Maystre, Variant D in each layer by Pomp’s
classification �Ref. 15, p. 113�.

Analytical aspects of boundary integral operators are
well described in the literature; see, for example, Ref. 15 or
Ref. 27. They are not touched upon here except in a few
remarks. In addition, some details of the PCGRATE code, in-
cluding the discretization and particular algorithmic en-
hancements for small � /d ratios, are described
elsewhere.17,18 By contrast, the upper-level structure of the
multilayer algorithm is not sufficiently emphasized in the
existing publications. In order to make the algorithm more
accessible and general, we explicitly write out a chain of
operator equations, omitting details not pertinent to the struc-
tural level.

Consider a multilayer structure consisting of N+1 homo-
geneous material layers �0 , . . . ,�N, characterized by their
refractive index � j = �	 j
 j�1/2, j=0, . . . ,N, and N periodic in-

terfaces �̃0 , . . . , �̃N−1 �Fig. 5�, where 	 j are electric permit-
tivities and 
 j are magnetic permeabilities. A fixed part of

each interface �̃ j embracing exactly one grating period will
be denoted � j. �We prefer the enumeration beginning with 0
for two reasons. First, the material layer number 0 is often air
�or vacuum�, so it is not part of a fabricated grating. Second,
this enumeration is directly compatible with array indexing
in C��, which is the language of choice for the software
discussed.�

We refer to the semi-infinite layer �0 as the top layer and
to �N as the bottom layer. It is assumed that the light is
incident from �0. The bottom layer is semi-infinite down-
ward. We formally include the bottom layer into consider-
ation even if the lowest medium is a perfect conductor, in
which case �N is ignored in the computational procedure.

For every j=0, . . . ,N−1, the lower boundary of the layer

� j is �̃ j, which will be called the floor of the layer � j. Simi-
larly, for each j=0, . . . ,N−1, we call the upper boundary

�̃ j−1 of the layer � j the ceiling of � j.
Note that we allow the y projections of the boundaries to

be overlapping. This is vital in the modeling of coated grat-
ings.

B. Fields and boundary conditions

In this paper we are concerned with pure TE and TM
polarizations and nonmagnetic media �
 j =1�. The fields are
assumed time harmonic. Under these conditions, the Max-
well system of equations reduces to a single Helmholtz equa-
tion; therefore fields are represented in the sequel by scalar
functions. They would be two-component vector functions in
the case of conical �off-plane� diffraction, which will be dis-
cussed in detail elsewhere. The total field in �0 is the sum of
the incident field uinc�x ,y� and the reflected field u0�x ,y� and
in �N only the transmitted field uN�x ,y� is present. For j

1, the induced field inside the layer � j is denoted uj�x ,y�.
The solver only deals with boundary values of the fields and
their normal derivatives. For a scalar function u�x ,y� defined
near � j �from either side�, we take the normal derivative
�nu=nx�xu+ny�yu directed inward � j, that is upward for � j

described explicitly as y= f�x�. In general, the boundary � j

can be described by parametric equations x=x�t�, y=y�t�
with parameter t. We deem that � j lies to the left from � j as
t increases. Then the components of the normal vector to � j

are nx=y��x�2+y�2�−1/2, ny =x��x�2+y�2�−1/2, where the prime
denotes d /dt.

For j=0, . . . ,N−1 define the functions on the bound-
aries:

uj
+ = �uj��j−1

, v j
+ = � �uj

�n
�

�j−1

,

uj
− = �uj��j

, v j
− = � �uj

�n
�

�j

. �12�

Thus there are four values attributed to every boundary � j:
the upper values uj

−, � j
− �that belong to the layer � j and are

the floor values for that layer� and the lower values uj
+, � j

+

�that belong to the layer � j+1 and are the ceiling values for
that layer�. These four values obey the standard boundary
conditions of Maxwell’s theory.

If � j is a penetrable interface �separating dielectric or
finitely conducting layers� then

uj
− + � j0uinc = uj+1

+, v j
− + � j0vinc = � jv j+1

+. �13�

Here � j0 is the Kronecker symbol, �inc=�nuinc and

� j = 	 1 for TE polarization

�� j/� j+1�2 = 	 j/	 j+1 for TM polarization.

 �14�

Only one boundary condition is required if the lower layer
� j+1 is perfectly conducting �and hence necessarily j+1=N�:

uj
− = 0 for TE polarization,

v j
− = 0 for TM polarization. �15�

In addition, in the homogeneous regions � j, j=0, . . . ,N �ex-
cluding boundaries � j, j=0, . . . ,N−1� the field uj satisfies
the homogeneous scalar Helmholtz equation:

�uj + kj
2uj = 0, �16�

where kj =k0�� j /�0�=2��� j /�0� /� is the wave number in me-
dium number j. Denote, as usual �see, e.g., Ref. 24, Eq.
�1.42��

FIG. 5. Schematic of a slab grating.
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�m = k0 cos � + 2�m/d, m = ± 0, ± 1, ± 2, . . . ,

�m
�j� = �k2

j − �2
m�1/2, �17�

and the square root branch is such that Re���
0 and Im���

0. The reflected field is given by the Rayleigh expansion
which in the far zone reduces to a finite sum of propagating
plane waves with reflected order amplitudes cm

+: for �x ,y� in
�0

urefl�x,y� = �
��m��ka

cm
+ exp�i�mx + i�m

�0�y�

+ evanescent waves. �18�

The reflection coefficient is defined as

R = �
��m��k0

�cm
+�2

�m
�0�

�0
�0� . �19�

Summands in R are called reflected order efficiencies. If the
lower medium is a lossless dielectric �Im�kN�=0� �case of
transmission grating�, then we define the Rayleigh coeffi-
cients cm

− of the transmitted field �for �x ,y� in �N�

utransm�x,y� = �
��m��kN

cm
− exp�i�mx − i�m

�N�y�

+ evanescent waves �20�

and the transmission coefficient

T = 
�N

�0
�2

�
��m��kN

�cm
−�2

�m
�N�

�0
�0� . �21�

Similar to �19�, summands in T are called transmitted order
efficiencies.

C. Potentials

Relations between boundary values of the fields across
the layers can be found in terms of boundary potentials. Let
us introduce potential operators using the following nota-
tional conventions �see Fig. 6�. If P=SL or P=DL is the
family name of operators of single-layer or double-layer po-
tentials, we have the following.

�a� Pj
∨ denotes the operator that takes a single variable

function on the ceiling � j−1 of the layer � j and pro-
duces a function of two variables in � j.

�b� Pj
∧ denotes the operator that takes a single variable

function on the floor � j of the layer � j and produces a
function of two variables in � j.

�c� Pj
↓ denotes the operator that takes a single variable

function on the ceiling � j−1 of the layer � j and pro-

duces a function of two variables on the floor � j of the
same layer. Thus Pj

↓ is Pj
∨ composed with restriction

onto the boundary � j.
�d� Pj

↑ denotes the operator that takes a single variable
function on the floor � j of the layer � j and produces a
function of two variables on the ceiling � j−1 of the
same layer. Thus Pj

↑ is Pj
∧ composed with restriction

onto the boundary � j−1.
�e� Pj

± denote the singular boundary potential operators on
the upper and lower boundaries of � j, respectively. If �
is a function on � j, then �= Pj

−��� is also a function on
� j defined as the nontangent limit

��x*,y*� = lim
�j��x,y�→�x*,y*�

Pj
∧����x,y�, �x*,y*� � � j .

�22�

Finally, define families of operators that involve normal
derivatives on the boundaries. There are two such families,
namely, normal derivatives of single- and double-layer po-
tentials �NSL and NDL�. Similar to the above, where P
means either SL or DL, we now write NP meaning either
NSL or NDL. The operators NPj

↓ and NPj
+ take a function �

on the ceiling � j−1 of � j and produce the normal derivatives
of the potential Pj

∨��� on � j and � j−1, respectively. Simi-
larly, the operators NPj

↑ and NPj
− take a function on � j to

functions on � j−1 and � j equal to the normal derivatives of
the potential defined through Pj

∧.
Remark. There are no operators of the form P0

↑, P0
↓,

PN
↑, PN

↓, P0
+, PN

−, where the notation refers to nonexistent
boundaries of the semi-infinite layers �0, �N.

The operators P↑, P↓, NP↑, and NP↓, connecting values
on different boundaries, are nonsingular. The operators P±

and NP± that take a function to a function on the same
boundary are singular. Recall that P stands for SL or DL. We
use the families SL, NSL, and DL of boundary operators.
The two-character notation can cause some inconvenience in
equations containing products of operators. For this reason,
we use the following single-letter abbreviations:

S = SL, N = NSL, D = DL, �23�

The family NDL containing hypersingular boundary opera-
tors is not currently used in our program; therefore we do not
introduce a single-letter abbreviation for it. Including it in a
solver would bring a flexibility sufficient to avoid poor con-
ditioning due to internal eigenvalues.28 �In practice the ei-
genvalues seldom cause problems, even in large series of
computations performed in an automatic scanning regime
with varying parameter�s�.�

Detailed discussion, formulas, and jump relations for po-
tential operators can be found in many sources. Table I
shows the correspondence between our notation and that in
Ref. 15. In the first ten rows, we refer to p. 111 in Ref. 15,
and our layers � j, � j+1 correspond to Pomp’s Mu, ML, re-
spectively. In the last six rows, we refer to p. 114 in Ref. 15.

The value of the field at any location can be found from
the boundary data by using Green’s formula. Inside the inner
layer � j, we have

FIG. 6. Potential operators in a single grating layer.
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uj = Sj
∧�� j

−� − Dj
∧�uj

−� − Sj
∨�� j

+� + Dj
∨�uj

+� . �24�

�Evaluation of the potentials near boundaries involves singu-
lar integration and requires special numerical
techniques.29,30� Formulas for the diffracted field in �0 and
�N contain only two terms. Diffraction efficiencies or far
field patterns for the reflected and transmitted fields can eas-
ily be found from the corresponding boundary values. Col-
lecting the reflection and transmission coefficients, which are
the summands in Eqs. �19� and �21� into vectors r and t, one
can express them in a compact form as

r = S0
+���0

−� − D0
+��u0

−� ,

t = DN
−��uN

+� − SN
−���N

+� , �25�

with appropriate vector-valued functionals �Ref. 27, Eq.
�26�� applied to the boundary functions. For lossy gratings,
also the absorption coefficient can be calculated as a bound-
ary integral from u0

−, �0
−, uN

+, �N
+.18

We note a certain freedom in the choice of the potential
operators, more specifically, of Green’s functions �kernel
functions�. First, Green’s functions in the operators P0 and
PN must be outgoing upward and downward respectively.
This is dictated by the radiation conditions satisfied by the
reflected and transmitted fields. It is not mathematically nec-
essary that Green’s functions in the inner layers possess such
directional propagation properties, though it is customary to
have downward propagating kernels in the P∨ �and induced�
operators and upward propagating kernels in the P∧ �and
induced� operators. Second, Green’s function in an inner
layer is defined up to addition of an arbitrary solution of the
homogeneous Helmholtz equation. In particular, an arbitrary
finite linear combination of typical plane waves can be added
to Green’s function. It seems that opportunities offered by
this observation for improving the efficiency of Green’s
function computations have not been explored.

D. Marching procedure

Green’s formula representation of the field �24� can be
used to obtain a chain of integral equations from which the
boundary functions uj, � j can be found. However, in that
approach normal derivatives of double-layer potentials
would arise. Maystre’s scheme avoids this technical compli-
cation. Instead of Eq. �24�, an alternative representation of
the field is exploited:

uj = Sj
∧�� j

−� − Dj
∧�uj

−� + Sj
∨�� j� . �26�

The functions � j are unknown densities of single-layer po-
tentials defined on the layer ceilings. For the bottom layer set

uN+1 = S∨
N+1��N+1� . �27�

Suppose that the ceiling functions of the layer � j+1 are ex-
pressed in terms of the density � j+1 in the operator form

�uj+1
+

� j+1
+ � = �Y j+1

Zj+1
��� j+1� . �28�

Let us find a similar expression for the layer � j and derive a
backward recurrence for the operators Y and Z. Let j�0.
Using the boundary conditions �13�, we get

uj
− = Y j+1� j+1, � j

− = � jZj+1� j+1. �29�

On the other hand, the representation �26� implies

uj
− = Sj

−�� j
−� − Dj

−�uj
−� + Sj

↓�� j� . �30�

Substituting �29� to �30� and solving for � j+1, we obtain

� j+1 = Qj�� j� , �31�

where the transfer operator Qj is the solution of the operator
equation

��I + Dj
−�Y j+1 − Sj

−� jZj+1�Qj = Sj
↓, �32�

where I is the identity operator which takes any function on
� j+1 into itself. It follows from �26� and �29� that

uj
+ = �Sj

↑� jZj+1 − Dj
↑Y j+1��� j+1� + Sj

+�� j�; �33�

therefore comparing with �28� we obtain

Y j = �Sj
↑� jZj+1 − Dj

↑Y j+1�Qj + Sj
+. �34�

To obtain a formula for Zj, let the observation point in
Green’s formula �24� be on � j. The formula becomes

uj
+ = Sj

↑�� j
−� − Dj

↑�uj
−� − Sj

+�� j
+� + Dj

+�uj
+� . �35�

On the other hand, by �26�,

uj
+ = Sj

↑�� j
−� − Dj

↑�uj
−� + Sj

+�� j� . �36�

Subtraction yields

Sj
+�� j

+� − Dj
+�uj

+� + Sj
+�� j� = 0. �37�

Compare this with �28�, where j+1 is replaced by j, and
obtain

Zj = �Sj
+�−1�− Sj

+� + Dj
+�Y j� . �38�

The formulas �32�, �34�, and �38� constitute the down-up
marching procedure. It remains to specify the initial values

TABLE I. Correspondence between operator notations in two papers

This paper Ref. 15

Sj
∧ G+

S∧
j+1 G−

Dj
∧ N+

D∨
j+1 N−

Sj
+ V+G+

S−
j+1 V−G−

N j
+ U+G+

N−
j+1 U−G−

Dj
+ V+N+

D−
j+1 V−N−

Sj
↑ V−

�G2
�

Sj
↓ V+

�G2
�

N j
↑ U−

�G2
�

N j
↓ U+

�G2
�

Dj
↑ V−

�N2
�

Dj
↓ V+

�N2
�
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YN+1 and ZN+1. In the case of an infinitely conducting bottom
layer, one can set

�YN+1

ZN+1
� = �0

I
� for TE, �YN+1

ZN+1
� = � I

0
� for TM.

�39�

Otherwise, according to �27�, set

YN+1 = S+
N+1. �40�

The operator ZN+1 is then found by the general formula �38�.
Equation for the top layer. The layer �0 needs special

treatment, but the equations are similar. In Eq. �28� with j
=0, the third term is absent. The boundary condition �13�
includes the incident wave. Instead of Eq. �32�, we obtain

��I + D0
−�Y1 − S0�0Z1��1 = �I + D0

−�uinc − S0
−�inc. �41�

The function �1 is found from Eq. �30�. Then
�2 , . . . ,�N+1 are found recurrently by Eq. �31�. If the bottom
layer is perfectly conducting, the recurrence terminates at �N.

Assuming that the potential operators are available now
as ready-to-use building blocks, an object-oriented imple-
mentation of the operator equations becomes relatively easy.
Such implementation allows one to treat exactly complex
grating structures with hundreds of boundaries having real
profiles with a fine structure �microroughness� at very low
� /d ratios ��1�10−4� on a personal computer. Three con-
crete examples of efficiency modeling, performed with a
computer program based on the outlined scheme, and com-
parisons to synchrotron radiation measurements are pre-
sented below in a common format. The comparative study
includes the orders’ wavelength separation for different kinds
of soft-x-ray-EUV gratings.

IV. SAMPLES OF SEPARATION IN WAVELENGTH
OF INSIDE AND OUTSIDE ORDER EFFICIENCIES
OF MULTILAYER-COATED GRATINGS

A. Investigation of the efficiency of a blazed
MoRu/Be grating

The use of Be as the transmissive spacer material per-
mits the operation of gratings at wavelengths as short as the
beryllium K absorption edge at 11.07 nm. The efficiencies of
the multilayer gratings, greatly enhanced by the MoRu/Be
coatings, were measured using synchrotron radiation in the
11.1–12.0 nm wavelength range.7 The multilayer gratings
were produced by applying Mo4Ru6/Be multilayer coatings
to replicas of a concave ion-etched holographic master grat-
ing with 2400 grooves/mm and a 2 m radius of curvature.
The replica grating pattern covered an area of 45�35 mm2.5

The Mo4Ru6/Be multilayer coatings with 50 bilayers were
applied to the concave replica gratings at Lawrence Liver-
more National Laboratory �LLNL� using the magnetron sput-
tering technique.31

It was found5,7 that the calculated efficiencies of the
Mo4Ru6/Be multilayer grating were very sensitive to varia-
tions in the groove profile. Small changes in the assumed
groove shape, groove height, and facet angles resulted in
significant changes in the calculated efficiencies. In this case,
the average depth of modulation of the layers was scaled to

achieve the best agreement with the experimental data at
11.375 nm wavelength where the efficiency was maximal.
The depth of the profile of the replica grating substrate, as
derived from the AFM measurements, is 8.5 nm.5,19 During
the process of coating the grating substrate with multiple
layers to produce a multilayer grating, a smoothing of the
groove profile takes place. As a result, the depth of modula-
tion of the upper layers decreases. As the influence of dif-
fraction by the upper layers on the absolute grating efficiency
is higher than that of the lower layers, and because there was
no information on the change of the profile modulation depth
�and the profile deformation� from one layer to another, a
model with an average �with respect to all layers� profile
modulation depth was used. By scaling the initial groove
profile of the replica grating, the groove profile was deter-
mined that resulted in the smallest least-squares difference
between the calculated and measured efficiencies at a wave-
length of 11.375 nm. The resulting depth was 6.5 nm, which
means that the profile becomes appreciably smoother in the
upper layers.

The microroughness was determined by integrating the
power spectral density �PSD� function over the 4–40/
m
spatial frequency range for the AFM data in the center of a
grating before and after application of the MoRu/Be
multilayer coating. The rms value of the microroughness de-
rived from the PSD function before coating was 1.35 nm and
included spikes that contributed significantly to the micro-
roughness value.7 The rms microroughness derived from the
AFM image after coating, which included bump-type
features,7 was 0.93 nm in the integrated spatial frequency
range. The Strehl factor32 calculated for the same plane
multilayer stack, the ratio of the reflectance maxima reduced
by rough interfaces and the reflectance maxima obtained
with perfect interfaces, was used to account for the layer
interdiffusion and random microroughness of the
Mo4Ru6/Be multilayer grating. The inferred microrough-
ness, resulting in the best agreement between the peak values
of the calculated and measured efficiency in the −2 order
near 11.375 nm, was 1.03 nm. This is an intermediate value
between the measured AFM data before and after coating.
The random roughness topography of the grating was taken
into account in the fit by applying the amplitude Debye-
Waller factor5 with the rms roughness of 1.03 nm for all
interfaces. The periodical lateral-correlated component of the
border roughness from the average AFM groove shape was
included automatically by accounting for the real groove
profile with a high degree of accuracy �210 points per pe-
riod�. An assumption about the absence of the vertical corre-
lation between the border random roughness components
was applied in this model.

The good agreement between the measured and calcu-
lated reflectances indicates the reliability of the optical con-
stants derived from the tables of Henke et al. in this wave-
length region.4 For the purposes of this work, the updated
refractive indices were derived from the compilations.33 We
also tried refractive index data from the handbook of Palik,34

which are more suitable for longer wavelengths,4,5 to find
better agreement between the calculated and measured effi-
ciencies in the 11.1–12.0 nm wavelength range.19
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Figure 7 shows the measured and different calculated
efficiencies in the diffraction orders of the Mo4Ru6/Be grat-
ing with 50 MoRu/Be periods. The measured inside and out-
side orders �Fig. 7�b�� are separated in wavelength while the
efficiencies calculated5,7 using Eq. �5� �Fig. 7�a�� are not. In
contrast, the efficiencies calculated using the rigorous ap-
proach based on Eq. �41� are in good agreement with the
measured data and with the phenomenological approach
based on Eq. �11�. As seen in Fig. 7, the calculated efficiency
curves of some orders tend to be larger and wider than the
respective measured efficiency curves. This may result sub-
stantially from scaling and averaging of the border profiles.
When Eq. �5� is used, the computations execute much faster
�by a few orders�, owing to the implementation of approxi-
mate algorithms, but only the heights of order maxima are
predicted well. To determine the spectral separation of the
inside and outside orders and the exact shape and position of
efficiency curves, rigorous electromagnetic theory for
multilayer-coated gratings must be applied.

The time required to calculate one wavelength point for
the MoRu/Be 103-border grating efficiency �with the energy
balance error of �0.01%� was about 4 s for the approximate
calculation model �Eq. �5�� and was about 10 min for the
rigorous model when using an IBM® Think Pad with Intel®
Pentium® M 1700 MHz processor, 1 Mbyte cache,
400 MHz bus clock, 512 Mbyte random access memory
�RAM�, and controlled by OS Windows® XP Pro. All mod-

eling in this section was performed for plane grating models,
because the ratios of the grating sizes to radii of curvature
and the incident beam sizes to grating sizes are small.

B. Investigation of the efficiency of a lamellar Mo/Si
grating for Solar-B mission

Due to the high reliability and performance of multilayer
Mo/Si coatings, they enjoy wide use in telescopes and
normal-incidence spectrometers, both ground based and
space borne. The EUV imaging spectrometer �EIS� devel-
oped for the Solar-B spacecraft35 is an orbital instrument
making use of a multilayer diffraction grating, and the
Mo/Si coating was chosen and optimized for its optics.8 The
toroidal diffraction grating, 100 mm in diameter and with a
nominal radius of 1.18 m, having 4200 grooves/mm and
rectangular �trapezoidal� groove profile of nominal depth
58 Å, was fabricated holographically by Zeiss Lazer Optics
GmbH, with subsequent ion etching of the fused silica sub-
strate. Different Mo/Si coatings, optimized for operation in
two narrow EUV wave bands �17–21 and 25–29 nm� con-
taining many emission spectral lines �including those of the
He II, Fe XII, and Fe XXIV ions�, were deposited onto the two
halves of the mirror and grating.

The measurements of the flight M2 mirror and FL1 grat-
ing were performed at the Naval Research Laboratory syn-
chrotron beamline.8 The efficiency was measured at 60
points of a square grid covering both parts of the working
grating surface 90 mm in diameter. The efficiencies of the
multilayer diffraction grating were measured at nine wave-
lengths with the radiation incident at an angle of 6.5° on the
short-band side �from 17.1 to 22.0 nm� of the grating. Ex-
cept for several extreme points at the edges of the working
aperture, the efficiency was found to be quite uniform over
the grating surface. The efficiencies of the FL1 grating mea-
sured at the central point of its short-wavelength side �gravi-
tation center� are identified by markers in Fig. 8�b�.

The theoretical diffraction efficiency was determined for
unpolarized incidence radiation and parameters of the
multilayer stack identical with the M2 mirror.23 For the
short-band half of the diffraction grating, these parameters
are 20 Mo/Si layer pairs with a bilayer period DBragg

=10.3 nm and a Mo thickness to bilayer period ratio �
=0.37, 0.2 nm Si–Mo interface rms roughness, and 0.85 nm
Mo–Si rms roughness. The Si protective capping layer is
2 nm thick. The trapezoidal groove profile based on AFM
measurements has 6 nm depth, side slopes of 35°, and equal
top and groove widths.8 The boundary profile was assumed
the same for all layers. The Strehl factor calculated for the
same plane multilayer stack was used to account for the in-
terdiffusion and random microroughness of the Mo/Si
multilayer grating. The modeling was carried out using the
refractive index data for Si and Mo taken from different
sources.4 There were no free parameters in the calculation.

Figure 8�b� indicates good agreement between the mea-
sured and rigorously calculated diffraction efficiencies of the
FL1 grating in the ±1, 0, −3, and −5 orders in the entire
working wavelength range. As pointed out above, while the
physical model based on Eq. �5� does not yield wavelength

FIG. 7. The measured ��b�, curves with markers�, approximately calculated
�a�, and rigorously calculated ��b�, curves without markers� efficiencies vs
wavelength of the −3 to +3 orders of a 2400-groove/mm multilayer-coated
grating with 50 MoRu/Be periods operating at an angle of incidence of
13.9°.
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separation of the inside and outside orders, this model is
capable of accurately predicting for this particular groove
profile the shape of the efficiency curves and the heights of
their maxima �Fig. 8�a��. The theoretical and experimental
efficiencies of the FL1 grating, as well as the backup flight
grating FL7, which were calculated with the approximate
model based on Eq. �5�, are presented in Refs. 4 and 8. The
time required to calculate one wavelength point for the FL1
grating efficiency �with the energy balance error of �0.01%�
was about 1 s for the calculation based on Eq. �5� and about
1 min for the calculation based on Eq. �41� using the above
mentioned computer.

C. Investigation of the efficiency of a blazed
Mo/Y grating

One of the most intense emission lines in the shortest
EUV spectral range is Fe XVIII at 9.392 nm. This line was
observed in rotating cool stars and white dwarf systems and
can be used, for example, to study magnetic fields. It is
therefore of interest to develop high-resolution spectroscopic
instruments based on high-efficiency diffraction gratings that
operate in this wavelength region. Experimental measure-
ments have demonstrated substantially high reflectance for
Mo–Y multilayers and good stability.

An experimental and theoretical investigation of a
normal-incidence Mo/Y multilayer-coated diffraction grat-

ing operating at a 9 nm wavelength was reported in Ref. 6. A
replica of a concave holographic ion-etched blazed grating
with 2400 grooves/mm was coated by a Mo/Y multilayer.
The grating efficiency in the TM polarization was measured
at the Lawrence Berkeley National Laboratory.6 The Mo/Y
multilayer coatings were applied to a planar witness sub-
strate and the concave grating at LLNL. rms roughnesses
were derived from the AFM measurements at LLNL.

The theoretical efficiencies of the Mo/Y multilayer dif-
fraction grating were previously calculated using the model
based on Eq. �5�.6 Here we report more accurate efficiency
calculations of the Mo/Y grating at 8° incidence in the 9 nm
wavelength region based on the rigorous multilayer MIM
described in Sec. III. We used an averaged groove profile
model as was done in the case of the MoRu/Be multilayer
grating. The best fit was obtained with the master AFM-
measured groove profile5 scaled by a factor of 1.07 for all
203 boundaries. The real polygonal profile had 121 points.

Because of the space limitation and the deposition ge-
ometry, the grating and the flat witness substrate could not be
coated simultaneously. Thus the multilayer interface param-
eters of the coating on the grating were inferred from fitting
the measured and calculated efficiencies in the principal or-
der. The measured peak efficiency in the −3 order was 2.7%
at a wavelength of 8.79 nm. The best fit was obtained with
DBragg=4.528 nm, �=0.445, N=100 bilayers, and the inter-
face roughness of 0.96 nm, in good agreement with the de-
signed parameters.6 The Strehl factor calculated for the same
plane multilayer stack was used to account for the interdif-
fusion and random microroughness of the Mo/Y multilayer
grating. The interface roughness in the fit was assumed to be
the same and noncorrelated for each interface, and the am-
plitude reduction by the Debye-Waller factor was applied.
The rms roughness inferred from calculations, 0.96 nm, is
near the average of the measured rms roughness before and
after coating in the 4–40/
m spatial frequency range.6

Figure 9�a� shows the calculated spectral efficiencies of
the Mo/Y 2400-groove/mm grating using the approximate
model of Eq. �5�. Again, Eq. �5� does not yield wavelength
separation of the inside and outside orders and is not capable
of accurately predicting the shape of the curves, although
this model does determine well enough the values of the
efficiency maxima. Figure 9�b� shows the measured and the
calculated efficiencies, using the rigorous approach of Eq.
�41�, of the Mo/Y grating versus wavelength. There is ex-
cellent agreement between the measured and calculated effi-
ciencies of this grating in the principal −3 order. The agree-
ment for the high-efficiency −4 and −1 orders also is good.
The agreement for the +1 and the low-efficiency orders is
somewhat worse due to the unknown real border profiles for
this particular Mo/Y 2400-groove/mm replica grating.

The time required to calculate one wavelength point for
the Mo/Y 204-layer grating efficiency �with the energy bal-
ance error of �0.01%� was about 1 s for the approximate
calculation model of Eq. �5� and was about 18 min for the
rigorous model of Eq. �41� using the above mentioned com-
puter.

FIG. 8. The measured ��b�, data markers�, approximately calculated �a�, and
rigorously calculated ��b� curves� order efficiencies vs wavelength of the
4200-groove/mm multilayer-coated FL1 flight grating, with 20 Mo/Si pe-
riods on the short-band side of the EIS optics, operating at an angle of
incidence of 6.5°.
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V. SUMMARY AND CONCLUSION

The spectral separation of the inside and outside orders,
which has been observed experimentally, was accounted for
phenomenologically and by rigorous numerical modeling un-
der the conditions of close to normal incidence of radiation
on a multilayer-coated grating operating in the soft-x-ray-
EUV spectral region. The reason for the observed substantial
�a few angstroms or even nanometers� wavelength separation
between the maxima of the inside and outside orders of a
multilayer-coated grating operating in the short-wavelength
range is related to the different angles of deviation of the
respective orders. The wavelength separation occurs also
with uncoated diffraction gratings but is not clearly pro-
nounced because the efficiency is broad and slowly varying
with wavelength.

The rigorous MIM, which is a variant of BIM and is
designed for solving problems of diffraction from multilayer
gratings in the soft-x-ray-EUV range with arbitrary layer
thicknesses and boundary shapes, including boundaries with
a real �for instance, AFM-measured� profile, is developed in
a general form of the operator formalism. The MIM is a basis
for the multilayer solver PCGRATE-S�X�, which was chosen for
the calculations described in this paper.

As follows from both the approximate and rigorous ap-
proaches, the spectral separation between the same number

inside and outside orders grows with increasing wavelength,
angle of incidence, groove frequency, and diffraction order
number.

To determine the shape and position of the efficiency
curves in the soft-x-ray-EUV range, including bulk and
multilayer-coated near-normal-incidence gratings with real
boundary profiles, one should use codes based on rigorous
electromagnetic theory for multilayer gratings, for instance,
on the MIM.

For multilayer-coated gratings operating in diffraction
orders near the Bragg peaks of the multilayer coating, the
separation of the same number inside and outside orders in
wavelength, although small, just as in the case of bulk grat-
ings, is nevertheless quite significant and should be taken
into account in the design and manufacture of high-
resolution spectrometers. For example, spectrometers de-
signed to accurately measure small wavelength shifts and
spectral line shapes should account for the wavelength shift
resulting from the wavelength-dependent order separation ef-
fect. This effect is a common property inherent in all bulk
and multilayer diffraction gratings working in the soft-x-ray-
EUV region under near normal incidence.
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