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The boundary integral equation code PCGrate-S(X) is used to analyze diffraction on Hubble Space Telescope
Cosmic Origins Spectrograph gratings at different boundary shapes and layer thicknesses. An effect of reso-
nance anomalies excited in nonconformal dielectric layers overcoated on the surface of metallic grating on the
efficiency is studied for the first time to our knowledge. Refractive indices (RIs) for bulk MgF2 taken from well-
known references are found to be not suitable for thin optical layers at wavelengths between 115 and 170 nm.
A method based on scale fitting of calculated and measured grating efficiencies is outlined for derivation of
thin-film optical constants at hard to measure wavelengths. The calculated efficiency based on real boundary
profiles and derived RIs of the G185M subwavelength grating is shown to fit within 9.6% or better to the mea-
sured data. © 2006 Optical Society of America

OCIS codes: 050.1950, 050.1960, 260.2110, 260.7190, 310.2790, 310.6860.
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. INTRODUCTION
hen the instruments were selected for the fifth (and last

lanned) servicing mission to the Hubble Space Telescope
HST), the Cosmic Origins Spectrograph (COS) was in-
luded as a much more sensitive UV spectrograph; the
er-element performance increase burden fell chiefly on
ispersive optics improvements. The design of the COS
V channel required highly dispersive optical elements

apable of resolving the faintest point objects in a slitless
pectrograph with at least 40% blaze efficiency.1 The COS
ear-ultraviolet (NUV) channel �170–320 nm�, divided

nto three separate wave bands, was covered by three
igh-dispersion and one low-dispersion gratings. The
ost challenging 5870 groove/mm G185M grating in-

ended for operation at vacuum-UV (VUV) wavelengths
elow 200 nm has the highest groove density and the
hortest operational wavelength range of all COS NUV
ratings. The grating also turned out to be the most diffi-
ult to model. Initial modeling that exploited scalar
heory failed completely; more-sophisticated modeling2

ade use of standard refractive-index (RI) libraries, and
nscaled groove profiles data failed to reach even mar-
inal agreement with experiment at wavelengths below
50 nm. At that time, for grating selection it was only
1084-7529/06/010155-11/$0.00 © 2
atural to rely on the legacies of diffraction grating stud-
es developed for the two most relevant grating-oriented
rojects: the Far Ultraviolet Spectroscopic Explorer
FUSE) and the Space Telescope Imaging Spectrograph
STIS). While FUSE had already successfully flown
ighly resolving 6000 groove/mm curved metal-coated
ratings, the STIS grating program collected a wide data-
ase on development and testing of high-quality NUV
ight gratings. Platinum ultrafine FUSE gratings coated
ith a SiC monolayer or an Al+LiF bilayer perform ex-

eptionally well at wavelengths below 120 nm.3,4

The multilayer-coated COS NUV gratings were de-
igned bearing in mind these successful experiences but
ith an application targeted at significantly longer wave-

engths in order to provide assured long-term NUV spec-
roscopy for the Hubble Space Telescope. The efficiency
easurements for coated gratings, however, were disas-

rous: none of the high-spectral-resolution NUV channel
ratings met specifications after the final coating. It took
ong and exhaustive measurements and modeling efforts2

o prove that the scalar approach is generally not appli-
able to multilayer-coated gratings. Resonance efficiency
nomalies associated with waveguide funneling modes
egrading the COS NUV grating performance were mea-
006 Optical Society of America



s
m
m
N
f
t
l
o
t
f
f
u
s
o
t
b

g
w
c
o
i
t
i
P
o
c
p
P
e
s
i
2
s
f
f
d
p
c
d
k
a
o
m
t
y
l
i
S

2
T
fi
e
s
g
n
P

w
H

t
s
e
s

A
C
+
i
i
e
�
r
v
S
r
t

a
i
d
i
�

l
S
a

t
g

l
r
c
p
w
u
d
d
n
e

156 J. Opt. Soc. Am. A/Vol. 23, No. 1 /January 2006 Goray et al.
ured and qualitatively described. The main unresolved
odeling issue was the choice of RI data for efficiency
odeling. Thorough modeling performed2 for the COS
UV G185M grating by use of the optical constant data

rom Palik5 produced only marginal agreement between
heoretical and measured efficiency values at wave-
engths in the 115–170 nm range, where a MgF2 coating
ver Al is imperative to protect reflectance from degrada-
ion caused by oxidation. The reason for this modeling
ailure might arise from an RI data inconsistency in the
ar-ultraviolet FUV–NUV wave band. Most commonly
sed sources provide RI data for bulk materials. Recent
tudies carried out by Larruquert and Keski-Kuha6 dem-
nstrated, however, significant differences among the op-
ical constants of ion-beam-sputtered, evaporated, and
ulk MgF2 at FUV wavelengths.
To model the efficiency of the G185M subwavelength

rating we used the commercial program PCGrate,7

hich proved to be a reliable tool to study (at a reasonable
omputing cost) complex problems of diffraction on peri-
dic gratings that require an accurate treatment of grat-
ng anomalies.2,7–9 Reference 9 describes the modified in-
egral method (MIM), which is a variant of the boundary
ntegral equation method and is used to advantage in
CGrate-S(X) as applied to gratings having one boundary
r two congruent (conformal case) or noncongruent (non-
onformal case) boundaries. Section 2 of the present pa-
er features the multiboundary integral solver of
CGrate-S(X), emphasizing details not found in the lit-
rature or specific to this implementation. Section 3 pre-
ents experimental results for COS NUV G185M grat-
ngs; more details on the experiment can be found in Ref.
. Section 4 presents thorough efficiency modeling for a
ubwavelength grating with real [measured by atomic
orce microscopy (AFM)] boundary profiles and RIs taken
rom different sources, including best fits of calculated
ata to experimental ones. We solve indirectly the inverse
roblem of efficiency calculations to derive RIs in the vi-
inity of anomalies. One first finds a layer topographic
istribution (boundary profiles and thicknesses) for a
nown RI distribution in a given spectral region; then for
known grating profile, one finds the unknown RI in an-

ther spectral range using scale fitting of calculated and
easured grating efficiencies. Model-based exact compu-

ational efficiencies obtained with the PCGrate software7

ield a better than 10% agreement (with respect to abso-
ute values) with measured efficiencies at any wavelength
n the 120–255 nm range. Conclusions are presented in
ection 5.

. MULTILAYER SOLVER OF PCGrate-S(X)
he multilayer integral solver is based on the algorithm
rst described in Ref. 10. A more transparent and detailed
xposition, together with discussion of various marching
chemes that avoid hypersingular potential operators, is
iven in Ref. 11. The scheme in our program is the origi-
al one of Maystre, that is, variant D in each layer by
omp’s classification (Ref. 11, p. 113).
Analytical aspects of boundary integral operators are

ell described in the literature; see, e.g., Ref. 11 and 12.
ere we give some details of the PCGrate code, and par-
icular algorithmic enhancements are described in Sub-
ections 2.B and 2.C. In addition, the generalization of the
nergy conservation identity to multilayer gratings is pre-
ented in Appendix A.

. Grating Geometry, Fields, and Potentials
onsider a multilayer structure (Fig. 1) consisting of N
1 homogeneous material layers �0 , . . . ,�N, character-

zed by their RIs �j= ��j�j�1/2, j=0, . . . ,N, and N periodic
nterfaces �̃0 , . . . , �̃N−1. A fixed part of each interface �̃j
mbracing exactly one grating period will be denoted as
j. [We prefer the enumeration beginning with 0 for two
easons. First, the material layer 0 is often air (or
acuum), so it is not in fact a part of a fabricated grating.
econd, this enumeration is directly compatible with ar-
ay indexing in C��, which is the language of choice for
he software discussed.]

We refer to the semi-infinite layer �0 as the top layer
nd to �N as the bottom layer. It is assumed that the light
s incident from �0. The bottom layer is semi-infinite
ownward. We formally include it into consideration even
f the lowest medium is a perfect conductor, in which case

N is ignored in the computational procedure.
For every j=0, . . . ,N−1, the lower boundary of the

ayer �j is �̃j, which will be called the floor of layer �j.
imilarly, for each j=0, . . . ,N−1, we call the upper bound-
ry �̃j−1 of layer �j the ceiling of �j.
Note that we allow the y projections of the boundaries

o be overlapping. This is vital in the modeling of coated
ratings.

In this paper we are concerned with pure TE or TM po-
arizations and nonmagnetic media; therefore fields are
epresented by scalar functions. They would be two-
omponent vector functions in the case of conical (off-
lane) diffraction, which will be discussed in detail else-
here. The total field in �0 is the sum of the incident field
inc�x ,y� and the reflected field u0�x ,y�. For j�1, the in-
uced field inside layer �j is denoted as uj�x ,y�. The solver
eals only with boundary values of the fields and their
ormal derivatives �j

±. There are four values attributed to
very boundary �j: the upper values uj

−,�j
− (that belong to

Fig. 1. Slab grating.
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ayer �j and are the floor values for that layer) and the
ower values uj

+,�j
+ (that belong to layer �j+1 and are the

eiling values for that layer).
Relations between boundary values of the fields across

he layers can be found in terms of boundary potentials.
etailed discussion, formulas, and jump relations for po-

ential operators can be found in many sources. Table 1
hows the correspondence between our notation and that
n Ref. 11, p. 111. Our layers �j ,�j+1 correspond to Pomp’s

u, ML, respectively.
The value of the field at any location can be found from

he boundary data by a Green’s formula. Inside the inner
ayer �j, we have

uj = Sj
ˆ�vj

−� − Dj
ˆ�uj

−� − Sj
ˇ�vj

+� + Dj
ˇ�uj

+�. �1�

valuation of the potentials near boundaries involves sin-
ular integration and requires special numerical tech-
iques (see, e.g., Ref. 13). Formulas for the diffracted field

n �0 and �N contain only two terms. Diffraction efficien-
ies or far-field patterns for the reflected and transmitted
elds can easily be found from the corresponding bound-
ry values. Collecting the reflection and transmission co-
fficients, which are the summands in Eqs. (A3) and (A5),
nto vectors r and t, one can express them in a compact
orm as

r = S0
+	�v0

−� − D0
+	�u0

−�,

t = DN
−	�uN

+ � − SN
−	�vN

+ �, �2�

ith appropriate vector-valued functionals [Ref. 12, Eq.
26)] applied to the boundary functions. For lossy grat-
ngs, the absorption coefficients can also be calculated as

boundary integral from u0
−, �0

−, uN
+ , �N

+ (see Appendix A).
As a potentially useful remark, let us note a certain

reedom in the choice of the potential operators, more spe-
ifically of the Green functions (kernel functions). First,
he kernels in the operators S0

ˆ and D0
ˆ in SN

ˇ and DN
ˇ must

e outgoing upward and downward, respectively. This is
ictated by the radiation conditions satisfied by the re-
ected and transmitted fields. It is not mathematically
ecessary that the Green functions in the inner layers
ossess such directional propagation properties, although
t is customary to have downward propagating kernels in
he Sj

ˇ, Dj
ˇ �j
0� operators and upward propagating ker-

els in the Sj
ˆ, Dj

ˆ �j�N� operators. Second, a Green func-
ion in an inner layer is defined up to the addition of an
rbitrary solution of the homogeneous Helmholtz equa-
ion. In particular, an arbitrary finite linear combination
f typical plane waves can be added to the Green function.
o our knowledge, it seems that nobody has attempted to

Table 1. Correspondence between Operator
Notations in Two Papers

This Paper Ref. 12

Sj
ˆ G+

Sj+1
ˇ G−

Dj
ˆ N+

Dj+1
ˇ N−
xplore opportunities offered by this observation to im-
rove the efficiency of Green function computations.

. Discretization of Operator Equations
he choice of a numerical method to solve the boundary

ntegral equations11,12 is to a large extent independent of
ther implementation details of the algorithm. It is not
ven necessary to use the same method for every bound-
ry provided that adjacent boundary solvers have a com-
on data interface.
Our realization uses a rather simple but robust and

niversal method, the classical Nyström collocation.14

he collocation points and the quadrature nodes can be
nterlacing or can be put at the same locations. The latter
hoice (our program’s default option in most cases) re-
uires a standard regularization of integrals.12 It is worth
oting that the regularization is used even at corner
odes of a nonsmooth boundary (see Ref. 11, p. 120). For
elatively shallow profiles, the nodes can be uniformly put
long the x coordinates. But the uniform distribution with
espect to the arc length, as in Ref. 12, is more universal
nd makes it possible to treat, for example, lamellar or
eep sinusoidal profiles by the integral method without
ny additional effort on the part of the user.
More details about the accuracy of the method and

arious options of the program can be found in Ref. 9 (Sec-
ion 2.C). Convergence results can be proved rather pain-
essly if all the boundaries between the layers are smooth:
ne refers to standard properties of boundary potential
perators in Sobolev spaces. Theoretically, in that case, a
iscrete sequence of frequencies may exist, for which the
ethod will run into a noninvertible operator and the dis-

retization will correspondingly run into an ill-
onditioned matrix. The situation is more subtle if the
oundaries have corners or cusps. It becomes much
arder to prove solvability of operator equations and to

nvestigate convergence of numerical methods. Math-
matically, the dramatic gap between smooth and nons-
ooth cases is due to different analytical properties of the

otentials. For example, in the nonsmooth case the
ingle-layer potential is no longer a compact operator in
2���.15 Theoretic estimations and explicit convergence
xponents in the transmission problem with nonsmooth
oundary and various discretization schemes have been
orked out,15–18 but to our knowledge there are no math-
matical derivations of numerical convergence rates for
ultilayer structures.
Our experience with the current solver shows that dis-

rete eigenvalues do not cause any real trouble and can be
ypassed with a tiny deviation of parameters unless the
umber of layers becomes very big or a very thin layer is
resent. Convergence deteriorates at the presence of thin
ayers, at high frequencies, and at a large number of lay-
rs. For discussion of some crash test calculations on this
ode, we refer the reader to Ref. 9.

In spite of many research efforts (see, e.g., Ref. 19),
omputation of the kernels remains a time-critical part of
he integral method for periodic structures. To accelerate
onvergence of the series representing the kernels, we use
itken’s �2 method, which is a simple one-term improve-
ent over a popular acceleration (described, e.g., in Ref.

0, Section 3.8.2). More accurate Kummer and Euler–
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nopp acceleration techniques (see references in Ref. 9)
ake sense in combination with higher-order collocation

r Galerkin methods. However, it is a difficult task to
chieve an acceptable combination of robustness and
ide-range applicability with higher-order codes.

. Code Optimization
o reduce computing time for matrices of the discretized
perator equations, two enhancements at the algorithmic
evel are used: cache for the Green functions and cache for
xponential functions (plane waves). We describe these
ethods in order. Both assume a time–memory trade-off.
he amount of memory required for cache can be calcu-

ated in advance in each case and adjustments (cache off
r partial) are done automatically.

. Cache for the Green Functions
atrix entries of discretized integral equations are ker-

els of one of the three types: single-layer potential, its
ormal derivative, and double-layer potential. Any of
hese Green functions for the given layer has two vector
rguments: the source position x and the observation
oint x0. The value of the Green function depends on the
ifference vector d=x−x0.
There are a number of cases of practical interest when

he same difference vector d corresponds to more than
ne pair �x ,x0�. Typical situations include the following:

(1) conformal layers: upper and lower boundaries of
uch a layer are obtained from each other by a vertical
hift;

(2) more generally, layers whose boundaries are congru-
nt by a translation (not necessarily in the vertical direc-
ion); and

(3) rectilinear segments of boundaries, if collocation
oints are uniformly distributed along such a segment.

In all these situations, it is possible to reuse values of
he Green functions calculated earlier. The program
tores the following data: type of potential and difference
f arguments vector �x ,y� in lexicographical order.
ast search and insertion are provided by a binary tree
tructure (Ref. 21, Section 4.4). Memory expenditure for
he Green function cache is of the order of CNmax

2 per
ayer, where Nmax is the maximum number of collocation
oints on the boundaries, and the constant C incorporates
he size of the data structure corresponding to each node
f the tree. If no further layer has a RI of the current
ayer, then the cache gets overwritten as the solver pro-
eeds to a new layer. However, it is quite typical to have a
ultilayer structure with repeating indices, in which case

he Green functions computed for one layer have a chance
o be reused in another layer. Note that the more effective
he cache, the lesser the constant C (that is, the more that
epetitions occur). To save memory without compromising
ccuracy to any noticeable extent, single precision values
re used for the difference components x ,y.

. Cache for Exponential Functions (Plane Waves)
alculation of the Green functions makes extensive use of

ypical multiplicative combinations of exponential func-
ions:
exp�i�m�xj − xn� + i�m�yj − yn�� = �Em,j
+ /Em,n

+ if yj � yn;

Em,j
− /Em,n

− if yj � yn.	 .

�3�

ere

Em,j
± = exp�i�mxj ± i�myj�, �4�

nd �m ,�m are defined in Eq. (A1). Let Ñ be the number
f collocation points on a given boundary, that is, the sub-
cripts j and n in the above expressions assume Ñ differ-
nt values. Let P be the number of exponential terms to
e stored in the cache. That is, the index m assumes P
alues situated symmetrically (with a possible±1 imbal-
nce) with respect to 0. Normally P is the maximum num-
er of exponential terms used in computations of the
reen functions. If, however, there is not enough fast
emory in the system, a partial cache is used, where

ome exponents are precomputed and extracted from the
ache in the course of Green function computations, while
ther exponents are evaluated on the spot.

In total, 2PÑ exponents are precomputed for every
oundary. The value of P may vary depending on which (if
t all) acceleration method is used for series summation
or a Green function, but in most practical cases P�Ñ. So
emory expenditure is again of the order of Ñ2 per layer.
he precomputed exponents share the same memory for
very layer, so newer values override old ones. Unlike
ith Green function cache, saving the precomputed expo-
ents for a potential reuse in further layers with the same
Is does not make much sense: Precomputation needs
nly O�Ñ2� operations per layer, which is a tiny fraction of
he total, which is of order of Ñ3.

Keeping track of the stored elements order in this case
oes not call for any special technique like binary trees: A
wo-dimensional array is all one needs. However, a diffi-
ulty of another sort pops up. The numbers �m have non-
ero imaginary parts when �m� exceeds some m0, and the
symptotic of Im��m� is linear as �m� grows indefinitely.
hile the absolute values of the quotients in Eq. (3) never

xceed 1, the numerators and denominators by them-
elves can easily go beyond the underflow or overflow lim-
ts [depending on the signs of yj in Eq. (4)] in the standard
oating-point arithmetic. For example, the values
m��m�=1000 and yj=10, though rather extremal, can oc-
ur in grating calculations, implying the values E�m , j�
exp�±104�.
To resolve this problem, the data �Em,j� are stored in

he format {mantissa, exponent} (see Ref. 22, Section 4.B).
e fix a huge positive B (the base); in the program B
1020, a more or less arbitrary value. Every nonzero real
r complex number X can be uniquely written in the form

X = BqM, 1 � �M� � B. �5�

he number M (represented in the usual floating-point
rithmetic) is the mantissa and the integer q is the power
xponent of the base B. The 2 byte C type short int is
sed for q in the program, which suffices for all practical
urposes.
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The only arithmetical operation required for Eq. (3) is
he division X /Y given that �X�� �Y�. Writing Y in the form
imilar to Eqs. (5), Y=Bq�M�, we obtain

X

Y
= �M/M� if q = q�

�M/M��B−1 if q = q� − 1

0 if q � q� − 1
� . �6�

he divisions on the right are carried out in the standard
oating-point format.

. EXPERIMENTAL DATA OVERVIEW
he COS NUV grating efficiency and scatter testing pro-
edures and results obtained were described in consider-
ble detail in Ref. 2. Almost 20 candidate flight gratings
ntended for four COS NUV subchannels were tested for
bsolute efficiency in various geometries. All measure-
ents were performed using a Fully Automated Ultravio-

et Scatter Tester23 (FAUST) setup configured for the
acuum environment.2

Here we will focus on the performance of only one most
nteresting G185M grating intended for operation at the
UV wavelength band (under 200 nm) in –1st order at
4.7 deg incidence for nonpolarized (NP) light (polariza-
ion state of the test beam was measured to an uncer-
ainty of ±2% at VUV wavelengths).

ig. 2. AFM profilometry on a G185M grating performed by
PN Digital Nanoscope IIIA (a) before and (b) after Cr/Al/MgF2
oating. Vertical scale is the same in both graphs.
At the time of performance characterization of the COS
UV gratings, the prime goal was to deliver optics satis-

ying the project minimum efficiency specification, and
ome interesting research-type tests were omitted to
void the risk of damaging the flight hardware. For ex-
mple, AFM grating surface profile measurements were
erformed on only one of the G185M Pt-coated master
ratings and on only one of the fully coated
u/Cr/Al/MgF2 G185M replica gratings.
The profile of the G185M grating (replica C) intended

or operation in the 170–200 nm range was AFM mea-
ured before and after deposition of the Cr/Al/MgF2 coat-
ng (Fig. 2). As seen from Fig. 2, after the deposition the
rofile depth decreased by approximately a factor of 2.05
46.4 nm versus 22.6 nm), and the profile shape changed
oticeably too, thus evidencing the case of nonconformal

ayering of the grating. For the reason that all G185M
ratings were manufactured from the same master and
y the same technology, one may suggest that all of them
hare before- and after-coating profiles. The layers depos-
ted on the SiO2 substrate are 160 nm Au, 5.4 nm Cr,
1.2 nm Al, and 40.1 nm MgF2 (Fig. 3).

. MODELING THE G185M GRATING
nitially, in this section the grating boundary profile is de-
ermined from the modeling at the wavelength range
here the RI is reliable. Then the PCGrate-S(X) code is
sed to determine the grating efficiency as a function of
he imaginary and real parts of the layer RI at the same
ncidence angles and wavelengths as those used in the ex-
eriment. Finally, the RIs of interest are derived by the
east-squares fitting of modeling to experimental data.
hat reciprocal approach of retrieval of the RIs is fully

easible under two conditions: (1) when an exact method
ased on accurate vector theories is used and (2) when the
recise layer boundaries are measured or calculated.8,24

uch an indirect line of attack played a decisive role in
ur attempts to reach a good agreement between experi-
ent and theory in the short-wavelength region, as dis-

ussed in Subsection 4.C.

ig. 3. Five-boundary G185M grating model. Horizontal and
ertical scales are different.
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Because of a small depth of light penetration into the
etal, only two upper layers (Fig. 3) are essential for ef-

ciency modeling. As this study has shown, the discrep-
ncy between the calculated efficiencies in the two-
oundary grating model with a semi-infinite Al layer and
n the complete five-boundary model does not exceed a
ew hundredths of a percent throughout the wave band.
his justifies our using the two-boundary model for effi-
iency modeling. The computational time, which is pro-
ortional to the number of layers at uncompromised accu-
acy, is thus reduced by a factor of 
2.5.

. Influence of Layer Shapes on Efficiency
e start off by setting up a grating model for determina-

ion of the MgF2–Al boundary profile, which is the least
ccurately known parameter. To determine which of the
wo AFM-measured boundary profiles, MgF2 (border 1) or
Cr)–Au (border 2), is closer to the MgF2–Al boundary, we
tarted with modeling the NP efficiency of a two-
oundary grating. We assume a conformal MgF2 layer
the lower Al boundary is identical in shape to the MgF2
ne) with the 40.1 nm thickness. The calculated efficien-
ies (Fig. 4, double-dotted–dashed curve) differ from the
easured values in time throughout the whole wave-

ength range, thus implying2 invalidity of model 0 with a
onformal layer. All calculated efficiency data presented
n Subsection 4.A were obtained with the RIs of Al and

gF2 taken from the handbook of Palik.5 Although here-
nafter the experimental efficiency data of two grating
eplicas (A and B) are displayed, we will focus primarily
n discussing the grating A data (solid squares in Figs. 4,
, and 9), because replica A is the grating on which more
easurements were performed.
The next step is to use two models with nonconformal

ayers, one with the lower boundary being the same as the
Cr)–Au one (Fig. 4, short-dashed curve) and the other
ith the boundary scaled from (Cr)–Au at all points by a

actor of 0.488 to the profile depth of the MgF2 boundary
Fig. 4, dotted–dashed curve). In both cases, a vertical dis-
lacement of one boundary with respect to the other (shift

ig. 4. Measured (points) and calculated (curves) –1st-order ef-
ciency of a G185M grating for nonpolarization plotted versus
avelength. Efficiency models calculated for Palik’s RIs and dif-

erent geometry of a nonconformal MgF2 layer: border (Bor.),
caling factor (scale), vertical shift (shift). A heavier region of the
orizontal axis indicates the G185M intended operational range.
f the boundary reference levels) was 40.1 nm, as in the
onformal model. As evident from Fig. 4, the nonconfor-
al model with unscaled lower boundary yields a notice-

bly superior qualitative agreement with experimental
ata. This suggests that the MgF2–Al boundary more
losely resembles the (Cr)–Au profile than the MgF2 pro-
le. The model takes into account the fact that the thick-
ess difference of 23.8 nm between the lower and upper
oundaries should be added to the conformal vertical dis-
lacement �40.1 nm� to obtain an adequate vertical dis-
lacement for the nonconformal MgF2 layer. In this way
he period-averaged thickness of the nonconformal MgF2
ayer is kept approximately equal to 40.1 nm within the
oundary shape distortion.
To determine the effect of profile shape, we set up mod-

ls with equal depths and vertical shifts. The first one has
he lower MgF2 boundary scaled down to the (Cr)–Au
oundary depth (making it smaller by a factor of 2.05)
nd a vertical displacement between the zero boundary
evels equal to 63.9 nm. As seen from Fig. 4, the efficiency
f this model (long-dashed curve) is close to that of an-
ther model with the unscaled (Cr)–Au lower boundary
nd a vertical shift of 63.9 nm (thin solid curve), while it
s inferior by 40% or more as far as matching the experi-

ental efficiencies. The latter suggests that, to set up an
xact model, one has not only to determine the depth of
he MgF2–Al boundary but also to take into account the
hape of its profile.

Having determined the type of the MgF2–Al boundary
rofile, we have to refine it by scaling the shape in depth
nd then comparing the efficiencies obtained for each
odel with experimental data. Another fitting parameter

s the vertical displacement of the boundaries. By auto-
atic modeling of the efficiency over a small-meshed grid

f these two parameters and wavelength, one can deter-
ine the average thickness of the MgF2 layer from the

est fit between the calculated and the experimental effi-
iencies. Even slight changes (with a few nanometers) in
rofile depth and vertical displacement give a noticeable
ise to the efficiency at fixed wavelengths, particularly in
esonance regions. Figure 4 presents an efficiency curve
bold solid curve) for model 1 with a lower-boundary scal-
ng factor of 1.04 and a vertical displacement of 68.5 nm.
he model with these parameters of the layer geometry
rovides the better least-squares fit (not worse than
9.8%) of calculated efficiency to experimental data, both
n the medium and in the long-wavelength ranges. As to
he short-wavelength part, no variations in the lower-
oundary profile chosen within our approach yield theo-
etical values of the efficiency close enough to the mea-
ured ones.

. Polarization Properties and Waveguide Modes
t is well known that a dielectric coating applied over a
etallic grating brings about, other conditions being

qual, the appearance of resonance anomalies associated
ith energy transport by leaky waveguide modes forming

nside the dielectric.25 The position and strength of these
nomalies is intimately connected with trajectories of the
cattering matrix poles and zeros of diffraction ampli-
udes in the complex plane, which are different for differ-
nt polarizations (e.g., Ref. 20, Sections 5.3.2 and 5.4.1).
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he phenomenological theory (polology) gives an insight
nto the origin and evolution of anomalies relating them
o just a few parameters (poles, zeros).25 In principle,
olological calculations can be carried out using an inte-
ral method-based code provided that it is able to treat
he incident wave vector with complex components. How-
ver, such formalism is more mathematically involved
han our approach based on direct calculations of grating
fficiency. The modeling presented in this subsection is
onnected only with the location and shape of the reso-
ance anomalies in the efficiency curves. Essentially we
djust the parameters of the model step by step using a
recise numerical tool to match resonances and to mini-
ize discrepancies between measured and calculated ef-

ciencies.
We start investigation of the formation of waveguide
odes in real grating layers and their effect on the spec-

ral efficiency curves with the conformal layer model simi-
ar to model 0 from Subsection 4.A. MgF2 layer thickness
ariation shifts the efficiency of the resonance peaks sig-
ificantly, as illustrated in Figs. 5(a) and 5(b). Here we
se an unscaled MgF2 AFM profile and RIs of both mate-
ials taken from Ref. 5. Figure 5(a) shows that the TM po-

ig. 5. Modeling of –1st-order efficiency of a G185M grating
ith a MgF2 conformal layer for different RIs and thicknesses
ersus wavelength.5,26 Thickness variations define the formation
nd positions of resonance anomalies: (a) TM polarization, (b) TE
olarization. AIP, American Institute of Physics.
arization threshold anomaly near 133.5 nm associated
ith the disappearance of the–2nd order becomes increas-

ngly evident, while layer thickness (that is, vertical dis-
lacement for conformal layers) grows. At the MgF2 layer
hickness of 40 nm, this threshold anomaly is clearly pro-
ounced, while at the thickness of 50 nm it transforms to
resonance anomaly near 136 nm.
The pattern is completely different for the TE polariza-

ion. At the 10 nm MgF2 layer thickness, no anomalies
re observed at all. At the layer thickness of 20 nm, a
learly seen resonance anomaly appears at 134 nm close
o the threshold. While the waveguide layer thickness in-
reases, the anomaly shifts to longer wavelengths and
rowth in amplitude. At the layer thickness of 50 nm, the
fficiency drops to zero near the 150 nm wavelength. The
ncrease in thickness also entails formation of other wave-
uide modes in the wavelength range down to 
133.5 nm,
here a substantial number of diffraction orders propa-
ate. At the layer thickness of 40 nm, those anomalies
ear a distinct resonance pattern with narrow efficiency
eaks with amplitude value differences of as much as 30%
f absolute values.

Figures 5(a) and 5(b) also present efficiency curves cal-
ulated for the model with a 40 nm thick MgF2 layer (thin
olid curves) and RIs taken from Ref. 26. The difference of
–10% in magnitude of the real parts of MgF2 RIs taken
rom Ref. 26 in the region of anomalies compared with the
ata from Ref. 5 strongly affects the TE and TM efficien-
ies, noticeably shifting both the position and the ampli-
ude of the anomalies. This effect is particularly clearly
bserved for the efficiency of the TE plane of polarization.

To study the anomalies in the grating model with a
onconformal layer, which is similar to model 1 from Sub-
ection 4.A, let us calculate efficiencies with different
caling factors for the lower boundary, vertical displace-
ents, and MgF2 RIs. Figure 6 plots the modeled grating
E efficiency with the lower-boundary scaling factors of
.9 and 1.1. As the vertical displacement and, accordingly,
he average layer thickness increase, the edge of the
nomaly shifts to longer wavelengths and its amplitude
rows strongly, as is in the case of the conformal model.
ew anomalies appear in the short-wavelength domain.
he amplitudes of the anomalies are appreciably larger

ig. 6. Modeling of –1st-order efficiency of a G185M grating
ith a nonconformal MgF2 layer for different RIs and geometry
ersus wavelength.5,26 AIP, American Institute of Physics.
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up to 70% of absolute efficiency) than in the conformal
ase, which should be assigned to the larger depth of the
ower boundary. In addition, unlike for the conformal

odel, the grating efficiency near anomalies is barely
bove zero, which can be attributed to the MgF2 layer be-
ng nonconformal. Note that an increase in depth of the
econd boundary and, consequently, the degree of noncon-
ormality of the layer makes the shape of the anomalies
ore complex as compared with the conformal case.
Figure 6 also presents the calculated efficiency for the

ame model but with a lower-boundary scaling factor of
.1, vertical-boundary displacement of 70 nm, and RIs of
gF2 taken from Ref. 26. As in the case of the conformal

ayer model, the positions, amplitudes, and the appear-
nce of the anomalies vary considerably with the slightest
hanges in the RI. Also, the difference in the behavior of

ig. 7. Measured (points) and calculated (curves) –1st-order ef-
ciency of a G185M grating for nonpolarization plotted versus
avelength.5,26,27 Efficiency models calculated for the nonconfor-
al MgF2 layer (border 2, scale of 1.04, shift of 68.5 nm) and RIs

f Al and MgF2 are taken from different sources. AIP, American
nstitute of Physics.

Fig. 8. Imaginary part of MgF RIs
2
he efficiencies is more clearly observed (bold solid and
hot-dashed curves, respectively) for the curves calcu-
ated for the RI taken from Ref. 26 rather than from Ref.
. Although the TE efficiency curve approaches values
lose to zero at short wavelengths due to the anomaly and
he TM efficiency curve (Fig. 6, thin solid curve) for the
ower-boundary scaling factor of 1.1, displacement of
0 nm, and MgF2 RI taken from Ref. 6 also exhibits reso-
ance behavior, the average unpolarized light efficiency
xceeds the absolute value of 30% under that model. The
agnitudes and positions of the resonance anomalies,

ad as they are, are playing a decisive role in the behavior
f TE efficiency in the near Lyman-� and mid-VUV wave-
engths and must account for the extremely low experi-

entally observed efficiencies at shorter wavelengths
Fig. 6).

. Deriving Factual MgF2 Refractive Indices from
fficiency Modeling
he efficiency curves calculated for model 1 for various
ombinations of the RIs of the materials taken from Refs.
, 26, and 27 are presented in Fig. 7. A twofold better fit to
easured efficiencies in the short-wavelength range is

eached for the MgF2 RI taken from Ref. 27 rather then
rom Refs. 5 and 26. The radical improvement is due to
he noticeable absorption evident at wavelengths beyond
12 nm for the MgF2 RI taken from Ref. 27. Figure 8 il-
ustrates the difference trend of imaginary parts of the

gF2 RI taken from different sources. Still, despite the
onsiderably better agreement between theoretical and
xperimental data at the short-wavelength region, the ab-
orption coefficients taken from Ref. 27 are smaller near
he absorption edge for the model to produce a real quan-
itative fit. The curve at Fig. 7 (bold solid curve) with the
l RI taken from Palik’s handbook demonstrates a good
uantitative agreement with experiment at all points in
he medium- and long-wavelength parts of the range,
ith the exclusion of points near 163 nm. The behavior of

FUV taken from different sources.
in the
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his theoretical curve over the 160–180-nm interval and
he comparison of the calculated and measured data sug-
est an overestimation of absorption in this region from
se of the MgF2 RI taken from Ref. 27. On the whole,
owever, model 2 with the RI of MgF2 from Ref. 27 and of
l from Ref. 5 provide a qualitatively correct fit to the be-
avior of efficiency throughout the wavelength range
rom 120 to 255 nm.

The result described above stimulates further refine-
ent of the model now aimed at obtaining a correct RI of
gF2. A comparison of the exactly calculated grating effi-

iency with measured values offers a possibility to not
nly find discrepancies between the tabulated and factual
alues of optical constants, but also to solve the inverse
roblem, i.e., to derive the RI of a layer material from the
rating efficiency data.28,29 The idea that underlies the
roposed method is based on the nonscalar properties of
he grating efficiency inherent in certain modes of its op-
ration. Given other fixed parameters, the efficiency be-
avior of a grating cannot be described by the scalar
heory of diffraction unless the ratio between relative and
bsolute grating efficiencies is proportional to the coating
gent reflectance. We will illustrate the point by the fol-
owing example explaining the grating efficiency model-
ng as an instrument used to extract the RI of MgF2 from
he measured grating efficiencies data.

In setting up the last grating model, we shall start from
he layer’s geometry of model 1 developed in Subsection
.A. As was done with the models 1 and 2, we use the Al
I from Ref. 5. In view of the fact that the RI of MgF2

rom Ref. 27 provided a better fit to the measured efficien-
ies in model 2 throughout the wavelength range covered,
e kept the real part of the MgF2 RI from Ref. 27 in the
ew grating model unchanged. We shall be searching for
he unknown imaginary part of the RI in the form of a
iecewise linear function with nodes through every
0 nm, starting from 120 nm. Considering that the ab-
orption at the MgF2 layer beyond 170 nm (as is evident
rom a comparison of calculations with experiment) is
mall, we will set the imaginary part of the MgF2 RI,
tarting from 170 nm and further into the long-
avelength region, to zero. We now have to determine the

lopes of the piecewise linear function over the
20–170 nm interval. Since only three experimental
oints were measured for grating A in this range, we shall
mprove the accuracy by adding an other data point, mea-
ured on grating B at 134.8 nm. Next we perform least-
quares fitting of the calculated efficiency curve for those
our points with a step of 0.01 for the imaginary part of
he RI. The values of the imaginary part of the RI for
gF2 obtained this way are listed in Table 2. To smooth

ut the function we then replaced the derived modeling
ero value of the imaginary part of the RI of MgF2 at
60 nm with the 0.001 value; such a small fit practically
oes not change the efficiency value at that wavelength.
e shall call the grating model with the RI of MgF2 from

able 2 model 3.
Figure 9 plots the efficiency curve obtained for model 3

Is (bold solid curve). What only remains is to check
hether the average-thickness parameters of the MgF2
onconformal layer used in model 3 provide a better fit
etween the calculated and experimental values of effi-
iency throughout the wavelength range with a new RI li-
rary. To do this, we scale the vertical displacement and
oundary parameters for model 3. Graphical results of
his three-parameter optimization (scale, shift, and wave-
ength) are displayed in Fig. 9. An analysis of these re-
ults shows that the parameters of model 3 do indeed pro-
ide the best agreement between the measured and
alculated values of efficiency throughout the wavelength
ange. The relative deviation of experiment from theory
or all wavelengths at which grating A was studied does
ot exceed 9.6% throughout the wavelength range. Fi-
ally, we will demonstrate the outcome of the imaginary
art of the MgF2 RI changes on the G185M grating effi-
iency. To do that we compile a library similar to the one
sed in model 3 but with the imaginary parts of the RIs
ecreasing linearly from 0.1 to 0 at the 120–170 nm
avelength region. This function is in fact a result of our
veraging the Table 2 function and, as can be readily veri-
ed, differs from it at all points by no more than 0.02. Fig-
re 9 presents an efficiency curve (thin solid curve) calcu-

ig. 9. Measured (points) and calculated (curves) –1st-order ef-
ciency of a G185M grating for nonpolarization plotted versus
avelength. Efficiency models calculated for accurately derived
nd linearly scaled (lin. func. of Im[RI]) RIs and different geom-
try of a nonconformal MgF2 layer.

Table 2. MgF2 RIs for Evaporated Thin Films with
Layer Thicknesses È40 nm Derived from

Efficiency Modeling

� (nm) Re(RI) Im(RI)

120 1.759 0.12
130 1.653 0.1
140 1.603 0.06
150 1.554 0.04
160 1.482 0.001
170 1.468 0
180 1.451 0
190 1.442 0
200 1.439 0

212.5 1.437 0
225 1.434 0

237.5 1.432 0
250 1.43 0

262.5 1.4275 0
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ated by use of these approximate values of the MgF2
bsorption index; all other parameters of model 3 remain
ntact. A comparison of the curve efficiencies (Fig. 9)
ased on scaled (thin solid curve) and exactly calculated
thick solid curve) values of absorption shows that the ef-
ciency changes at the wavelengths where the RI imagi-
ary values scale only slightly are indeed appreciable.
his comparison once again stresses the need of a de-
ailed numerical efficiency modeling to obtain accurate
alues of the unknown RIs; linear extrapolation or stan-
ard interpolations of known optical constants may in-
uce significant errors into the calculated efficiency
alues.9

All calculations were performed using the PCGrate-
(X) v.6.1 software7; an accuracy parameter of 200–300
iscretization points per each boundary was used. The to-
al error derived from the energy balance does not exceed
�10−4 at all points. Calculation time is 
30 s for one
ata point in a general polarization state. Calculation was
erformed with an IBM ThinkPad portable workstation
ith an Intel Pentium M 1700 MHz processor, 1 Mbyte

ache, 400 MHz bus clock, and 512 Mbytes RAM; the op-
rating system used was Microsoft Windows XP Pro.

. SUMMARY AND CONCLUSION
n conclusion, we sum up the results obtained and their
ossible application.
The exact MIM method, which is designed to solve

roblems of diffraction from multilayer gratings with ar-
itrary boundary shapes and layer thicknesses, including
onconformal layers and boundaries with real (e.g., AFM-
easured) profiles, is a basis for the multilayer solver
CGrate-S(X)7 used for the purpose of this work.
The FAUST scatterometer23 has been used to measure

he efficiency at the VUV–NUV range under various
ngles of incidence on a series of high-spatial-frequency
ratings fabricated for the COS HST project, in particular
he G185M subwavelength multilayer gratings.

Resonance anomalies and efficiency behavior as a func-
ion of the layer parameters (geometry and RI) and polar-
zation of incident light have been investigated for the

etal-coated grating overcoated with a nonconformal di-
lectric layer with real boundaries. The measured and
odeled efficiencies of the highly resonant G185M grat-

ng with AFM-measured boundaries were found to agree
ithin 9.6% of absolute efficiency in the extended wave-

ength range.
The tabulated MgF2 RIs5,26 are found to differ strongly

rom their actual values derived from the G185M grating
tudy. Numerical efficiency modeling revealed that at
avelengths of 160 nm and below, the MgF2 thin-film

oating applied exhibits a noticeable absorption, a point
lso substantiated by known experimental data on optical
onstants.6,27 We propose and describe in detail a method
o obtain factual RIs based on comparing experimental ef-
ciencies data with calculated values from MIM-based
odeling using precise AFM-measured groove profile for

he particular example of the G185M grating. The forego-
ng approach to derive the optical constants from grating
fficiency is similar to the methods employed customarily
or RI data deduction out of the reflectance and/or trans-
ittance measurements of bulk and thin-films
aterials.5 It is, however, independent and may turn out

o be much more accurate due to the resonant nature of
rating diffraction, especially near anomalous reflection
r for the materials showing significant absorption at dif-
cult to measure wave bands, for example, at EUV–VUV
avelengths.24

PPENDIX A: ENERGY BALANCE
QUATION FOR A MULTILAYER GRATING
et d be the grating period, k0 the wave vector of the in-
ident wave in medium 0, and � the angle of incidence. We
enote as usual [see, e.g., Ref. 20, Eq. (1.42)]

�m = k0 cos � + 2�m/d, m = 0, ± 1, ± 2, . . . ,

�m
�j� = �kj

2 − �m
2 �1/2, �A1�

here kj=k0��j /�0� is the wavenumber in medium j and
he square-root branch is such that Re���0 and Im��
0. Note that �0

�0�=k0 sin �. The reflected field in the far
one above the grating is a finite sum of propagating
lane waves: for �x ,y� in �0,

urefl�x,y� = �
��m��k0

cm
+ exp�i�mx + i�m

�0�y� + evanescent waves

�A2�

he reflection coefficient is defined as

R = �
��m��k0

�cm
+ �2

�m
�0�

�0
�0� . �A3�

f the lower medium is a lossless dielectric [Im�kN�=0
case of transmission grating)], then we define the coeffi-
ients of the transmitted field for �x ,y� in �N:

utransm�x,y� = �
��m��kN

cm
− exp�i�mx − i�m

�N�y�

+ evanescent waves, �A4�

nd the transmission coefficient

T = ��N

�0
�2

�
��m��kN

�cm
− �2

�m
�N�

�0
�0� . �A5�

he polarization-dependent coefficients � are defined as

�j = �1 for TE polarization

��j/�j+1�2 = �j/�j+1 for TM polarization	 . �A6�

n the case of a lossy medium �N, as well as for a perfectly
eflecting lower boundary, we set T=0.

If the grating is lossless, Im�kj�=0, j=1, . . . ,N, then
onservation of energy is expressed by the standard en-
rgy criterion

R + T = 1. �A7�

n the general case, the difference

A = 1 − �R + T� � 0 �A8�

s called the absorption coefficient in the given diffraction
roblem. In addition to being physically meaningful, ex-
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ression (A8) is useful as one of the accuracy tests for the
omputational code. The energy criterion in the lossless
ase says A=0. In the lossy case, one needs an indepen-
ently calculated quantity to compare with A. For such a
uantity, we use the absorption integral defined as the
um

IA =
1

�0
�0�d�Im�

�0

u0
+�v0

+�*ds

− ��N

�0
�2

Im�
�N−1

uN−1
− �vN−1

− �*ds� . �A9�

ere z* means the complex conjugate of z. The functions
0
+, uN−1

− are the boundary values of the field on the out-
ard faces of the grating and v0

+, �−vN−1
− � are the boundary

alues of the outward normal derivatives (with respect to
he slab). The second summand ��N−1 is not present if the
ower layer is lossy or absent. The discrepancy A−IA is a

easure of the numerical energy error.
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