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Abstract

An analysis is made of a rigorous and an approximate approach to the solution of the diffraction problem for a
multilayer-coated X-ray grating by the integral equation formalism. Whereas a rigorous analysis involving the integral
method requires a lot of computer resources, even for gratings with a small number of layers, the approximate approach
based on a modification of the solution of the integral equation at the lower boundary with a finite conductivity is
practically independent of the number of layers and is readily tractable with the use of a standard PC. The efficiencies of
multilayer gratings measured at grazing angles with synchrotron soft X-ray radiation are compared with the values
calculated using the integral approaches for ideal groove profiles.
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1. Introduction

Multilayer-coated diffraction gratings offer the
best promise for use in the short-wavelength range
from hard X-ray to EUV, but modeling of their
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efficiency by rigorous methods meets with difficul-
ties not encountered in calculation of bulk gratings
[1]. The scalar theory of diffraction or application
of the perfect conductivity approximation cannot
predict exact results; especially, for grazing in-
cidence angles, in the TM polarization, and in high
orders. One may refer, for instance, to a rigorous
calculation based on the differential method, but
performed only for the ideal sawtooth profile with
a small number of layers and only in the TE
polarization [2]. The IESMP integral method is
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capable of handling bulk gratings with real groove
profiles measured by scanning probe microscopy
or any other modern tool [3]. The integral method
is also applied successfully to studies of the
efficiencies of so called lamellar multilayer ampli-
tude gratings (LAMGs), which are the kind of the
Bragg optics [4].

The present paper reports on an integral method
applied to multilayer-coated gratings and referred
to in the literature as “modified” [5,6]. It was
employed to advantage to carry out the first
calculation of the accurate efficiency of X-ray
gratings with near-normal incidence, either coated
by several layers or multilayered, with any groove
profile, including a realistic (AFM-measured)
groove shape [7,8], and with due account taken
of random roughness [9-11]. The modified integral
method permits easy modeling the efficiency of X-
ray-range bulk real groove profile gratings operat-
ing at grazing incidence [12]. Application of the
exact method requires, however, considerable
computational resources, even in the case of
gratings with a small number of layers. For
instance, computation of one point for an X-ray
grating with several tens of layers takes up many
hours of work on a modern PC.

This stimulated the present author to develop in
Section 2 along with the rigorous method an
approximate approach for calculating the effi-
ciency of grazing-incidence multilayer gratings,
which is based on a modification of the solution to
the integral equation at the lower finite-conductiv-
ity boundary and does not depend on the number
of grating layers. A criterion of obtaining accurate
data provided by the approximation to the integral
method for multilayer X-ray grating efficiency
calculations is proposed, and the conditions of its
application are analyzed in Section 3. Next, in
Section 4 the rigorously calculated and measured
efficiencies of multilayer gratings with an ideal
groove profile are compared with approximate
data. Finally, the conclusion is given in Section 5.

2. A rigorous and an approximate approaches to
calculate the efficiency of a multilayer grating

The coupled integral equations for a multilayer
grating made up of K boundaries, starting with the

top one (first), can be cast using the second
Green’s identity and boundary conditions, similar
to the way this is done for a grating with one
interface separating two media [10]:
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where s, is the curvilinear coordinate of the
boundary S, U’ is the incident field, Uy is the z-
component of the electric or magnetic field at the
kth boundary, G.* is Green’s function for the
region above (+) or below (—) the kth boundary,
n is the vector of the surface normal (directed from
“—="to “+7), ¢;=1 for the TE polarization and
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¢;j=¢; for the TM polarization, and ¢; is the
dielectric permittivity of the jth layer, starting
from the top (zero) one.

Green’s function and its normal derivative for
the upper and lower regions separated by the kth
boundary are calculated identically

GECoy,si) =D fexpliKn(x — Xi(s}))
FiBE Y — SN/ B}/ Qid)
dGE(x, X', s,)/dn),
=+Y " {(dxj/dsp)sign (F(x) = f4(s})
— (df /i), / B explikn(x — X (s})]
By — (s} /(2d) (22)

where o, = K sin(0), 0 is the angle of incidence,
the wave number Ki =2m./ef/ly, Ao is the
wavelength in vacuum, off = nK + off ;, K=2n/d,
d is the period, B, =[(KE) — (a2
Im(B,)>0; Im(B,) = 0, Re(B,)>0.

The incident field and its normal derivative are
given by the expressions:

U’ = exp[ik™ (sin (0)x — cos (0)y)]e-
dU'(s))/dny = =i(BT ool df 1 (¥ (5)))/ds))
exp[—if{of 1 (¥ ()] (2.3)

where e, is the unit vector along the Z-axis,
fi1(x'(s1/)) is the function of the first profile; the
coordinate x'(s;’) is determined by the curvilinear
coordinate s;" on profile f, and the time factor
exp(—iwt) is dropped everywhere.

The amplitudes in the reflected orders can be
presented in the following way:

AP = (0.5/d) / (i) AU (s))/dn,
N
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— (df(s))/ds)(d, /87,
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The efficiencies in the propagating orders are
calculated using the expression

Ef = 4,1, /BTy (2.5)

The first and the last equations of system (2.1)
are single boundary integral equations derived
from the expressions for the field in the semi-
infinite region 0 and region K, respectively. The
two middle equations in system (2.1) are made
applicable to all the inner regions by setting
appropriately k=1, 2,...,K—1. These integral
equations contain boundary integrals coupling
the points of observation and integration at
neighboring boundaries, as well as the points
located at the same boundary. Under certain
conditions, Egs. (2.1) can be replaced by a large
system of coupled linear equations containing 2 K
equations and 2 K unknown electromagnetic field
components and their normal derivatives, which
can be found, for instance, by blockwise inversion
starting with the lowest layer (the corresponding
expressions are not presented here because of their
being too cumbersome); for more details, see [13].
Eq. (2.1) yields for K=2 an integral equation with
one unknown function in the operator form [6].

Joint solution of 2 K pair equations of system
(2.1) is far from being an easy task for modern
PCs, even for small values of K and in the
resonance region [6,13]. If an X-ray grating
consists of many tens of pairs of thin layers, this
problem becomes practically intractable for any
numerical method [2]. The modified integral
method developed by the present author for a
bulk grating [10] permits one to cut by an order of
magnitude the number of collocation points per
boundary, which, considering the cubic depen-
dence of computation time on this parameter,
speeds up the calculations about 1000 times. This
rate is, however, still not fast enough to allow
modeling gratings coated by hundreds of layers, a
process requiring staggering amounts of computer
time.

The absolute efficiency of an X-ray multilayer
grating in the nth order, E% (n), was represented [1]
by a product of the reflectance of a plane multi-
layer mirror, R,,(0), by the efficiency of a perfectly
reflecting grating EP(n, 0):

E3,(n) = Rn(0)EP(n, 0) (2.6)
where 0’ =0 in a general case, and 0'=0—0 for a

sawtooth-profiled grating with a blaze angle ¢ (the
condition in which the incident ray and the
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diffraction order n are symmetric with respect to
the working groove facet).

In the case of a sawtooth profile, the rigorously
calculated efficiency of a perfectly reflecting grat-
ing can be replaced by a phenomenological
relation based on geometric considerations [1,2]:

E2 (n) = Ryn(0—0)min[cos (6—26)/cos (0)
cos (0)/cos (8—29)]. 2.7)

The numerous rigorous calculations performed by
the present author show Egs. (2.6) and (2.7) to hold
with a high accuracy only for low-frequency gratings
(300 grooves/mm and 600 grooves/mm) [12].

A fundamental constraint on the application of
the above approach for bulk and multilayer X-ray
gratings, as well as for gratings with one dielectric
coating, is imposed by the oblique angle of
incidence, which should not be extremely grazing.
For instance, the incidence angle for some bulk
gratings should not exceed 40° [1]. The scalar
efficiency obtained from Eq. (2.7) was found to
differ from that calculated using the rigorous
differential method [1] for a multilayer grating
working at an incidence angle of 45°. The critical
value of the angle depends, however, on the actual
grating parameters and the light wavelength and
polarization. The incidence angle at which condi-
tion (2.7) still holds can in some cases be increased
to 70-80° [2]. The limitation on the angle of
incidence is connected with the difference in
efficiency between the finitely and perfectly con-
ducting bulk gratings operating in the X-ray range
under grazing incidence, particularly in the case of
the TM polarization. The same applies to multi-
layer gratings if the radiation penetrates all the
way down to the substrate.

Botten [14] proposed a realization of the integral
method, which describes light diffraction from a
grating with one corrugated surface coated on top
and below by several plane transparent layers.
Because the fields at the plane layers adjoining the
corrugated boundary are related through the
Fresnel coefficients, he succeeded in reducing the
problem of finding the multilayer grating efficiency
to solution of one integral equation at the
corrugated surface by modifying Green’s func-
tions. The integral method proposed by Botten for

the resonance region can be extended to perfectly
and finitely conducting reflecting gratings coated
by plane layers with complex refractive indices,
including those operating in the X-ray range. No
such study, however, has thus far been carried out.
A comparison of the models underlying determi-
nation of the efficiency by Botten and from the
product of two reflectances evidences their being
similar. The approach of Botten is universal and
more precise, compared to a calculation using Eq.
(2.6), because it permits one to analyze the
efficiency of a grating with a finitely conducting
substrate and avoid the limitations associated with
large incidence angles.

An approach similar to that proposed by Botten
was chosen by the present author for the problem
of diffraction from a multilayer X-ray grating, but
it was developed along the lines of the first
approach, namely, it dealt with the product of
the reflectance of a multilayer mirror by the
relative efficiency of a finitely conducting grating
specified by one (bottom) corrugated boundary:

E\(n) = Rn(0)E" (n, 0)/ Ry (0'). (2.8)

Our approach is similar to the one based on
determination of the field amplitudes found by
multiplying the corresponding amplitude scattering
matrices. If there is only one corrugated boundary,
the calculation simplifies greatly, because the
amplitude scattering matrices of a multilayer mirror
acquire in this case a trivial form. Realization (2.8)
can be employed to advantage in calculation of
gratings intended to operate at short wavelengths at
different angles of incidence, ¢ and 0, on the
multilayer mirror and the corrugated boundary,
respectively. To adapt the approximate approach to
multilayer gratings (2.8), we made use of subpro-
grams developed for bulk grating calculation and
for determination of the field amplitudes in reflec-
tion from a multilayer mirror [15].

3. Criterion of uncertainty of approximation in
calculations of the multilayer X-ray grating
efficiency

With the advent of universal numerical methods
and the fast progress in computer power and



L.I. Goray | Nuclear Instruments and Methods in Physics Research A 536 (2005) 211-221 215

development of various algorithms, the approx-
imate methods (analytical, semi-analytical, and
numerical) no longer play a dominant part in
theoretical studies. However, approximate ap-
proaches can be a help in understanding the
physics underlying the complex phenomenon of
diffraction and developing a straightforward
intuitive approach to its description. This turns
out to be particularly important for the X-ray
range, where obtaining rigorous solutions to many
problems of practical significance still meets with
difficulties.

One of the best known among the
general approximate methods of solution
of diffraction problems in the short-wave-
length region is the Born approximation, which
provides a fairly high accuracy. The number of
the terms to be summed in the Born expansion
converging in a small parameter depends on
the parameters of the problem and the required
accuracy. If the order of the Born appr-
oximation (i.e., the number of the terms to
be summed up) is large, an exact numerical
solution that can be obtained, for instance,
by the integral method may turn out preferable.
The convergence of a Born series representing
the asymptotics of the rigorous solution to
an integral equation in the principal diffraction
order for the case of one boundary with
depth £ can be characterized by parameter

&= (d/Dle — et |(h/2). 3.1)

The wvalidity of the Born approximation
and estimates of its convergence, similar to
Eq. (3.1), as applied to determination of
the efficiency of multilayer X-ray gratings
with different groove profiles were borne out
by rigorous calculations [16]. The condition <1
for the X-ray range is met practically always:
(10" =10°)(107"'+107%)(107' = 10%. The criterion
of the accuracy of the results obtained
using approximation (2.8) can be gained by
substituting the distances §; between adjacent
layers, j and j+ 1, and the angle of incidence 0 in
Eq. (3.1):

& = (d/Dlejs1 — &(h/2)(S;j cos(0)/2). (3.2)

The Bragg condition yields for not too high
orders S;cos(0)/A<1. We choose the condition

&1 (3.3)

as a criterion of a small uncertainty of results
obtained with Eq. (2.8) for grazing-incidence
multilayer gratings in the X-ray range.

We can now check the accuracy of approaches
(2.6)-(2.8) and the validity of criterion (3.3) by
comparing the corresponding figures with the
rigorous calculations using Eq. (2.1) of the
efficiency of gratings coated by one thin or thick
conformal layer and intended for operation in the
soft-X-ray range. Consider, as a case in point, a
grating with combination of the substrate and
layer materials, namely, a silicon sine grating with
a groove depth of 11.5nm, coated by 2 nm of gold,
and operating at a wavelength of 5nm, which
corresponds to a maximum efficiency at an angle
of incidence of about 86° and a frequency of 3600
groove/mm. In this case, the larger value of
parameter ¢; is 0.09, which fits well to criterion
(3.3). The efficiencies obtained for this grating in
the—first order by the finite substrate conductivity
approximation (2.8) coincide with the rigorously
obtained values for both polarizations throughout
the angular range covered, up to 89.5° (Fig. 1a). At
the edges of the range, the figures coincide to
within a few %, and at the maximum near 86°, to
not worse than 1%. In contrast to (2.8), approx-
imation (2.6) yields for the TM polarization at
incidence angles>83° a diverging result, which
differs from the rigorous figure by tens of times.
The efficiencies obtained using approximation
(2.6) differ by many times from the rigorous
values in both polarizations and throughout the
angular range covered (Fig. 1b). The maximum in
the efficiency in the—first order calculated for the
TE polarization using (2.6) is displaced by
approximately 1° relative to its exact position,
and its amplitude is approximately five times the
rigorously obtained value.

Consider the impact of an increase in the gold
layer thickness to 5nm on the accuracy of
efficiency calculation by method (2.8). The con-
vergence parameter (3.2) yields £;~0.23, which
again satisfies the criterion of obtaining a high-
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Fig. 1. Efficiency in the—first order of a silicon, sine-profiled,
3600-groove/mm grating with 11.5-nm-deep groove and coated
by a 2-nm-thick (a) or 5-nm-thick (a, b) gold layer, calculated
vs. angle of incidence for a wavelength of 5nm.

precision result. The efficiency in the—first order
calculated with (2.8) differs for both polarizations
by approximately 20% from the rigorous figures,
both at the edges and at the maximum (Fig. 1b).
The slope of the curves and the position of the
efficiency maxima are found by method (2.8) with
a much higher accuracy than using (2.6). The
results obtained by the perfect substrate conduc-
tivity model (2.6) differ by many times from the
rigorous figures throughout the angular range
under study in both polarizations, to diverge

altogether for angles of incidence>84° in the
TM polarization. The efficiencies of the Si/Au
gratings (Figs. la and b) were calculated using 400
collocation points. Correction of the terms in
calculation of Green’s functions and of their
normal derivatives was performed only in the
rigorous approach.

As another example, consider the efficiency of a
3600-groove/mm aluminum grating of a 15-nm
deep sine profile, which is coated by a 2-nm-thick
SiO, layer, as a function of the incidence angle at
the wavelength of 10 nm. Fig. 2a plots the curves
of its efficiency in the—first order, which were
calculated by the rigorous (2.1) and the approx-
imate (2.8) approaches for both polarizations in
the angular range of 70-89°. The approximate
finite-conductivity model offers a good agreement
with the rigorous method for both polarizations
and throughout the angle range covered, up to 89°.
The results obtained for 70° coincide to within
four digits after the decimal point, which is
comparable to the accuracy of both computations.
At the maximum of the efficiency, near 84°, the
results obtained with Eq. (2.8) differ from the
rigorously obtained figures for both polarizations
by not more than 8%. By contrast, the perfect
conductivity approximation (2.6) used for the TM
polarization and an incidence angle > 80° yielded a
diverging result, which differed tens of times from
the rigorous solution. The efficiencies obtained in
this approximation differ from the rigorous figures
by a few times for both polarizations, starting
from the incidence angle of 70° (Fig. 2b). The
maximum in the TE efficiency calculated using
approximation (2.6) is shifted to the higher
incidence angles by approximately 1.5° with
respect to its rigorous position, and its amplitude
is three times the exact value. In this particular
example, the largest of the two values of parameter
¢; derived from Eq. (3.2) is about 0.03 near the
maximum in efficiency, which fits well to the
inaccuracy criterion (3.3).

Let us study the dependence of the accuracy of
the results obtained and of estimate (3.3) on the
coating thickness. Consider a grating similar to the
one just discussed but with a 40 times larger SiO,
thickness, i.e., 80 nm. The efficiencies of the finitely
conducting grating in the—first order calculated
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Fig. 2. Efficiency in the—first order of an aluminum, sine-
profiled, 3600-groove/mm grating with 15-nm-deep groove and
coated by a 2-nm-thick (a) or 80-nm-thick (a, b) glass layer,
calculated vs. angle of incidence for a wavelength of 10 nm.

by method (2.8) differ from the rigorous figures by
few tens of % at the maximum and at the edges of
the wavelength range (Fig. 2b). Despite some
quantitative differences, approach (2.8) correctly
describes the behavior of the efficiency in both
polarizations, including the positions of the max-
ima and the shape of the curves. The larger of the
two values of parameter ¢; obtained for the angle
of incidence of 84° is approximately 1.2, which
satisfies the condition of obtaining exact results
with (2.8). The efficiency of the Al/SiO, gratings

(Figs. 2a and b) was calculated using 200 colloca-
tion points per one border. The terms in the
expansions of Green’s functions and of their
normal derivatives were corrected only for the
results obtained by the rigorous approach.

4. Comparison of the efficiency curves obtained for
grazing-incidence multilayer X-ray gratings
rigorously, by the approximate approach, and
experimentally

A few examples of comparison of theoretical
with experimental efficiency curves of typical
multilayer X-ray gratings would now be appro-
priate. The efficiency in the TE polarization of a
1200-groove/mm platinum grating with a 6.195-
nm-deep sawtooth profile, coated by 30 pairs of Si/
Mo layers 7.32 and 2.3 nm thick, respectively, and
operating in the 12.5-14.5-nm range at an angle of
incidence of 45° was calculated by the rigorous
differential method and in the scalar approxima-
tion [1]. The values of the efficiency obtained from
the scalar relation (2.7) are inaccurate (Fig. 3),
because the angle of incidence is in excess of 40°
[1]. Approximation based on (2.8) yields for the

0.5
A Rigorously, dif. meth.
O  Scalar appr.
\ Finite cond. appr.
NEREEEEEE Perfect cond. appr.
0.4 X

0.3

E(-1)

0.2

125 13 135 14 145
Wavelength, nm

Fig. 3. TE efficiency of a platinum, sawtooth-profiled, 1200-
groove/mm grating with 6.2-nm-deep groove and coated by 30
pairs of Mo/Si layers, calculated vs. wavelength for an angle of
incidence of 45°.
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efficiency in the—first order a value close to the
figures obtained by the rigorous differential
method. The slight discrepancies in the width of
the maximum and the oscillations at the edges of
the efficiency curve can be assigned to the lack of
precise information on the refractive indices used
in the calculation in Ref. [1], because the figures
obtained in the calculations from Eq. (2.6) do not
coincide at the maximum with the values derived
in Ref. [1] using the scalar expression like as (2.7)
(Fig. 3). We make use here of the available high-
precision values of the refractive indices quoted in
[17]. The largest value of parameter ¢&; at
A=13.5nm is about 1.6 for the grating under
study, which fits to criterion (3.3). The results
obtained using (2.8) are close to those derived
rigorously, because the angle of incidence is not
grazing. The rigorous differential method [1]
imposes a limitation on the grating groove depth,
which should not exceed the thickness of the first
layer.

Compare now the results obtained by the
present author’s integral method and the rigorous
differential approach, which imposes no con-
straints on the layer thickness [2]. Consider a gold
sawtooth-shaped grating with a period of 360 nm
and a blaze angle of 0.5°, which is coated by 30
pairs of Rh/C layers with thicknesses of 1.089 and
2.211 nm, accordingly, and optimized for opera-
tion at the wavelength of 1.33nm [18]. The TE
efficiencies calculated from (2.8) coincide with the
results obtained by the rigorous differential
method to within a few % for most wavelengths
(Fig. 4). The calculations made using Eq. (2.6)
coincide, on the average, to within 10% with the
figures obtained by the differential method, which
should be assigned to the small wavelength and the
relatively large grazing angle (11.7°).

Fig. 4 plots the efficiencies calculated by
methods (2.6) and (2.8) of an X-ray echelle grating
with a similar coating and period and operating at
1.33 nm, but with the facet angle of 5° and blazing
in the—10th order [18]. The coincidence of these
plots with the curve calculated by the differential
method is almost as good as in the case of the
grating working in the—first order. The agreement
obtained with approximation (2.8) is better than
that with (2.6), particularly in the left-hand part of

0.3
(m] E(-1), rigorously, dif. meth.
— — —— E(-1), finitecond. appr.
—--—- E(-1), perfect cond. appr. \
0.25 + A E(-10), rigorously, dif. meth. .
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------- E(-10), perfect cond. appr. /’ , B

I \.\\

0.2 b T

1.28 13 1.32 1.34 1.36 1.38 14 1.42
Wavelength, nm

Fig. 4. TE efficiency in different diffraction orders of gold,
sawtooth-profiled, 360-nm period gratings with different blaze
angles and coated by 30 pairs of Rh/C layers, calculated vs.
wavelength.

the curve. Note that the curve in Fig. 4 constructed
in the perfect conductivity approximation lies
above the finite conductivity curve, while in Fig.
3 the opposite is the case, which implies that
method (2.6) is inherently inaccurate. Determina-
tion of the echelle grating efficiency is one of the
most difficult diffraction problems, which, in
addition to the small 4/d ratio and large incidence
angles, is characterized by a large grating groove
depth. Additional difficulties emerge when study-
ing diffraction on multilayer echelle gratings,
particularly in the X-ray range [18]. The high
accuracy of the X-ray multilayer echelle efficiency
calculations, which was reached with the modified
integral method discussed in the paper with
modest computational facilities, makes this ap-
proach very promising and boosts its potential
[18]. The largest values of the ¢; parameters are
0.76 for a grating with the maximum of efficiency
in the—first order and 3.6, in the—10th order.
Although the magnitude of ¢; for an echelle
grating exceeds slightly the criterion of obtaining
high-precision results, the efficiency in the—10th
order is determined with a high accuracy because
of the short wavelength. The efficiency calcula-
tions for the —first order were performed with 800
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collocation points, and those for the—10th order,
with 1600 points; besides, in both cases the
solution was not refined.

An important check on the grazing-incidence
efficiency calculations of multilayer gratings made
in approximation (2.8) consists in comparing them
with the data derived by the rigorous integral
method and in actual measurements. Jark reports
on a substantial growth of the efficiency of a
grazing-incidence grating in the soft X-ray range
reached by applying a multilayer coating [19], but
because of there having been no adequate compu-
tational program at the time, no comparison with
experimental data obtained on a multilayer grating
was made. Jark discusses a glass, sawtooth-profiled
grating with 1200 groove/mm and a blaze angle of
1.5°, which was coated by an 18-nm-thick gold
layer and three pairs of C/Au layers with thick-
nesses of 11.7 and 6.5 nm, respectively. The grating
efficiency in the TE polarization was measured with
a reflectometer at fixed radiation lines produced
with a Bumble Bee monochromator. The efficien-
cies in the—first order measured on the multilayer
grating in the incidence angle range of 78.5-88° at a
wavelength of Snm are confronted in Fig. 5a with
theoretical data obtained by methods (2.1), (2.6),
and (2.8). The data calculated with Eq. (2.8) are
seen to coincide practically throughout the inci-
dence angle range covered with the experimental
results to within not worse than a few tens of %.
The curves calculated by (2.8) and rigorous
approaches exhibit a larger difference, particularly
in the first maximum region. At the highest grazing
angles, the both theoretical curves reveal a tendency
to converge. In view of the fact that the calculations
were made assuming an ideal groove profile, the
difference between the experimental and theoretical
values of the multilayer grating efficiency may be
considered insignificant. A discrepancy is observed
only at non-grazing angles of incidence, where the
efficiencies are about 0.001 or less, which is within
experimental error, and, hence, can no longer be
assumed reliable. The efficiencies calculated with
approach (2.6) are larger than those derived from
Eq. (2.8) in the beginning and in the middle of the
curve by a few tens of %, and at the end of it, by a
few hundreds of the same units. Parameter ¢;
reaches its largest value of approximately 1.6 at the
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Fig. 5. TE efficiency of a gold, 1200-groove/mm with a blaze
angle of 1.5° bulk (b) or coated by three pairs of C/Au layers (a)
grating, plotted vs. angle of incidence for a wavelength of 5 nm.

maximum of efficiency near 86°, which fits to
criterion (3.3) of obtaining accurate results with Eq.
(2.8). The uncertainty of the multilayer Born
approximation decrease with decreasing number
of layers [16]. Similarly, the smaller inaccuracy of
the results obtained by method (2.8) should be
assigned to the small number of coating layers. This
conclusion is buttressed by the measurements and a
rigorous efficiency calculation for a gold grating
with the same groove parameters as the multilayer
one (Fig. 5b). The difference between the experi-
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mental and theoretical values of the efficiency of the
gold grating amounts to the same few tens of % in
the region of significant values, just as for the
multilayer grating. The scatter seen in the bulk
grating efficiencies should be attributed to the only
cause, namely, to using the ideal groove profile
shape in the calculations. The results obtained by
the rigorous differential method for the gold grating
and rms roughness ¢ =0 [20] coincide in Fig. 5b,
within the plotting accuracy, with the theoretical
figures derived by the rigorous integral method.
The efficiencies in the—first order measured on
the multilayer and the bulk gold grating in the
incidence angle range of 65-82.5° at a wavelength
of 10nm are confronted with theoretical data
(Figs. 6a and b). The efficiencies calculated from
Eq. (2.8) are applicable not only qualitatively but
quantitatively for this case as well. The values
obtained by approach (2.8) and by the rigorous
approach coincide to within not worse than a few
tens of % throughout the incidence angle range
covered despite of some shift in the maximums
positions. The calculated and measured results
exhibit a larger difference. Just as for the
wavelength of 5nm, the major reason for the
discrepancy between the experimental and theore-
tical data on the efficiency for the wavelength of
10nm is not the large value of the parameter
&;=1.8 but rather the use of the ideal grove profile
in the calculations. This conclusion is supported by
an analysis of the discrepancies between the
measured and calculated efficiencies of the gold
grating (Fig. 6b). The experimental and theoretical
efficiencies of the bulk and multilayer gratings
disagree noticeably in the central part of the curves
while converging at larger incidence angles (Figs.
6a and b). The gold grating efficiencies obtained by
the rigorous integral method agree, within the
plotting accuracy, with the data yielded by the
rigorous differential method [20] for an rms
roughness ¢=0nm (Fig. 6b). The—first order
efficiencies of a multilayer grating calculated for
the wavelength of 10 nm by method (2.6) exhibit a
larger disagreement with the measurements com-
pared with the modeling by (2.8), particularly for
large angles of incidence (Fig. 6a), just as in the
case of the 5nm wavelength. The efficiencies of the
Au and Au/C gratings for the both wavelengths
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Fig. 6. TE efficiency of a gold, 1200-groove/mm with a blaze
angle of 1.5° bulk (b) or coated by three pairs of C/Au layers (a)
grating, plotted vs. angle of incidence for a wavelength of
10 nm.

were calculated using 400 collocation points.
Correction of the terms in calculation of Green’s
functions and of their normal derivatives was
performed only in the rigorous approach.

5. Conclusion

Rigorous approaches to modeling multilayer-
coated X-ray gratings meet with considerable
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numerical difficulties, while invoking the scalar
theory of diffraction or application of the perfect
conductivity approximation fails to yield exact
results, particularly for grazing incidence angles, in
the TM polarization, and in high orders. The
proposed approximation to the rigorous integral
method permits one to obtain with a high
precision the values of efficiency over a broad
range of parameters of X-ray gratings, including
those with a real (AFM-measured) groove profile
shape. It is independent of the number of layers
and can be used on a standard PC. The
approximate approach is capable also of taking
readily into account layers with roughnesses of
various kinds and their mutual diffusion. A
criterion of the accuracy provided by the approx-
imation to the integral method for multilayer X-
ray grating efficiency calculations was proposed,
and the conditions of its application were ana-
lyzed. A good agreement was obtained in all
multilayer grating cases with an accuracy not
worse than that reached for equivalent bulk
gratings. The efficiencies of multilayer gratings
measured at grazing angles with synchrotron soft
X-ray radiation are in good agreement with the
values calculated using the integral method for
ideal groove profiles. The rigorous and the
approximate approaches have been integrated into
the PCGrate®™-SX program used to obtain the
results presented in this paper.
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