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Abstract: Grating designs of practical interest, with subtle features of efficiency
curves sensitive to the data or requiring very accurate computations, are consid-
ered. Examples (conformal and non-conformal coated gratings, in both polarizations)
include: grating with a very thin oxide layer; non-conformal grating having a very
narrow resonance peak, sensitive to refractive index measurements and interpolation;
non-conformal sinusoidal grating with coating in the form of semi-cylinders with turn
points; echelle with a tapered coating. The results are obtained by two integral method
codes of the PCGrate™™ software. Implementation details and validation of results
are discussed.

OCIS codes: 050.1950, 000.4430

1. Introduction

Many known rigorous methods for calculation of diffraction efficiencies of periodic relief gratings
can, at least in principle, be applied to multilayer structures. Such applications have been reported
for the differential method and the integral method [1], the modal method [2], the coupled waves
method [3,4], the Chandezon coordinate transformation method enhanced by Li [5,6]. The simplest
and most straightforward method is that of Rayleigh, but it works only under well-known restric-
tions on geometry of the layer boundaries [1]. Some of the methods can also benefit from special
assumptions on geometry. In particular, it is always easier to deal with conformal gratings, i.e.
multilayer gratings with all bounded layers being conformal. A conformal layer is a layer between
two parallel boundaries, i.e. one of its boundaries can be brought onto another by a translation.
Among the above mentioned methods, only the integral one is capable to handle efficiency
calculations in case of arbitrary grating geometry, any polarization, and in a broad range of period-
to-wavelength (d/)) ratios: from low resonance values d/\ ~ 1 up to hundreds, such as for echelles
[7,8], or for gratings working in the soft x-ray or in the VUV (vacuum ultra-violet) range [9],
including real gratings with profile shapes obtained by measurements [10]. Rapid progress in super-
smooth coating technology, together with requirements for broadening devices’ working range and
increasing sensitivity, have stimulated efforts on mathematical modeling of gratings with several
conformal [11-13] and one non-conformal [14] thin layers. Further theoretical developments and
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numerical studies of more complicated gratings that have many non-conformal layers are interesting
and practically important.

Although multilayer versions of the integral method have long been known (see e.g. a very
clear exposition in [15]), the integral approach has not yet become popular in multilayer grating
modeling. Indeed, writing, debugging and testing a multilayer integral code is a formidable task.
Our effort on creating such a code, PCGrate-S, is announced here. In this paper we consider only
gratings with single-layer coating (i.e. having two borders between different media). Examples of
grating designs, chosen with potential applications in mind, demonstrate sensitive details of effi-
ciency calculations, and mark limitations of our code. The examples embrace the whole spectral
range, from infrared to VUV, gratings with thin and thick layers, dielectric and finitely conducting
layers, and various geometry of borders.

The paper is organized as follows. In Sect. 2 we outline variants of the integral method used
in commercial PCGrate™ software, with an emphasis on their distinctive features. Related issues
of accuracy and verification of results are touched. In Sect. 3, we proceed to the title subject —
examples of efficiency calculations in sensitive cases. Some of them are meant to be “stress tests” for
our code, while others demonstrate subtle, but potentially significant, features of efficiency curves,
which may be easily overlooked.

These calculations were first reported at the DOMO Conference (Tucson, AZ, 2002) and
published in an abridged form in [16].

2. Integral Method: features of implementation

A.  Elements of the Integral Method

The essence of the integral method (or methods) is a reduction of a diffraction problem’s dimension
by one, which leads to a great time and memory saving in computations.

A self-contained exposition of this theory is well beyond this paper’s scope. There are nu-
merous good references, e.g. [1,15,17]. The integral method is so flexible that we can point out
three groups of its “degrees of freedom”. Purpose of this section is to specify particular choices and
solutions used in our computer codes.

The three groups are:

e Mathematical structure: form of integral equations (choice of potentials), multilayer scheme;
e Methods of discretization, including treatment of corners (edges);

e Low-level details (calculation of the Green functions and their derivatives, solution of linear
systems, detecting and cacheing of repeating intermediate quantities, etc.)

The term modified integral method used in publications ([13] and references therein) with
regard to the PCGrate™ ™ software was introduced with this flexibility in mind. More precisely, it
is meant to be “modifiable” or “tunable”, however we keep the earlier term as a label. In a narrow
technical sense, the modified integral method is characterized in Sect. 2C.

B.  Multilayer grating solvers

Computations for this work were performed using two codes (solvers), PCGrate 2000 (in Sect. 3A),
and a newer one, PCGrate-S. The former finds an approximate solution to a multistack problem
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with thin layers using an integral equation on one boundary. The latter is not as fast, since it
employs integral equations on all boundaries, but it does not rely on asymptotical assumptions.

PCGrate 2000. The multilayer solver of PCGrate 2000 is primarily intended for echelles with steep
working facet or for very smooth profiles at ‘x-ray’ wavelengths.

In one of the first publications on multilayer integral method, Botten [18] considered a
grating that contains one profile of arbitrary shape and several plane interfaces above and below
it. Since the field values at adjacent plane interfaces are related by the known Fresnel coeflicients,
the whole multistack problem can be effectively reduced to one integral equation on the modulated
profile. As the depth of modulation and the wavelength decrease, the problem with plane interfaces
becomes a good approximation to the problem with conformal non-plane boundaries. This multilayer
approximation works well in all practical cases in the x-ray range including the soft x-ray to EUV
(extreme ultra-violet) wavelengths.

On the other hand, for echelles, in which the resonance on working facet plays a predominant
role, it is often (but not always) possible to “rotate” the plane stack and consider a multilayer
problem with the stack parallel to the working facet rather than to the substrate. Working facet angle
for echelles usually exceeds 60 deg, so the Fresnel coefficients for the rotated stack differ significantly
from those of the original stack. This approach generally works in case of thin layers (thickness-
to-wavelength ratio t/A < 1/10), or even thick layers with a low modulation-to-wavelength ratio
h/A. Its applicability depends also on the absolute value of the difference (¢, — e2) between the
permittivities of the layer and the substrate, as well as on the period-to-wavelength ratio d/A. A
convenient rule of thumb is

(d/N)]er —e2f(R/A) (/X)) < 1. (1)

For the soft x-ray range gratings the left-hand side is a product of one big, one small, and two small
to moderate values (10! <+ 10%) x (107! + 107%) x (10° + 107!) x (10° = 1072), so the criterion (1)
is met almost always. In the presence of waveguide modes and other resonance peculiarities, this
model, of course, is not valid.

PCGrate-S. This solver uses Variant D by classification in [15, Sect. 2]. Assuming that incident
field is given on the upper side of the grating, a final integral equation with respect to an unknown
convolution density on the upper boundary is obtained by solving a recurrent chain of integral
equations on lower boundaries, starting from the bottom and moving upwards.

To our surprise, we found that a scheme suggested in [11] (for 2-layer case) works in the
opposite direction and leads to a final equation with respect to an unknown convolution density
on the lower boundary. Our experiments with that scheme (not related to computations reported
in Sect. 3) showed its numerical instability. We offer a theoretical explanation below. It remains
unclear to us how to make use of a program based on that scheme if the number of collocation
points exceeds approximately 50.

Let us demonstrate the stability issue on a simple example. Consider a system of two weakly
connected linear algebraic equations

(w5 ) (e) = () )

Weak connection means |Wi,|, [Wsi| < 1. Eliminating one of the unknowns ®; or ®,, we obtain a
single linear equation with respect to the remaining unknown.

367



Diffractive Optics and Micro-Optics

Unstable scheme. Eliminating ®; from the 2nd row of Eq. 2
O, = —W,,' Dy®,. (3)
leads to the final equation with respect to ®,:
(—=Dy W33! Dy + Wy )@y = U. (4)

In this scheme we refer twice to the inverse of a small number W5, hence a loss of precision.

Stable scheme. We use again the 2nd row of Eq. 2, but now express ®, via ®;:
Oy = —D; Wy, ®. (5)
The final equation w.r.t. ®; reads
(D1 — W1 D3 'Wi2)®; = U. (6)

No small denominator is encountered here.

”Small denominator” in the operator sense. Now suppose that Eq. 2 is a system of integral, rather
than algebraic, equations, with D;, D, being invertible integral operators with respect to a suitable
pair of source and target function spaces, and the antidiagonal operators W;; being ”infinitely
smoothing”. Then W'Z;l do not exist as bounded operators. A discretization of scheme (Egs. 3,4)
employs inversion of an ill-conditioned matrix that approximates the non-invertible operator Wi,.

As applied to a diffraction problem with two boundaries, the situation is a bit more complex,
since ®; 9 become vector-functions that represents boundary data of a solution of the Helmholtz
equation. The 2 x 2 system of vector integral equations is, in fact, a 4 x 4 system of scalar equations,
but it is irrelevant to our discussion. The important fact is that operators connecting boundary data
on different boundaries are always infinitely smoothing. In particular, such are operators A5, By
in [11, Eq. 30]; thus the matrix inversion in Eq. 30 is an ill-conditioned operation. Contrary, neither
of operator matrices that need to be inverted in any of the schemes in [15] is infinitely-smoothing.

C. Discretizations, options and parameters

Progress in algorithms for numerical solutions of one-dimensional integral equations in the last two
decades has been nearly comparable with that of computer hardware. However, algorithms that
possess superior convergence properties are less universal with respect to a scatterer geometry and
not well-behaved in the high-frequency range. By these reasons, in the existing PCGrate codes,
more classical and robust approaches are used. Numerical solution of integral equations is based
on collocation with piecewise constant basis functions. The principal parameter, with respect to
which the convergence is evaluated, is the number N of collocation points on each boundary. (In
the actual program, N may vary from one boundary to another, which can be useful; see Sect. 3C.
At present, let us discard this option for simplicity.)

Three basic sources of numerical error are: (a) replacement of an integral equation by a finite
system of linear algebraic equations; (b) inexact evaluation of matrix elements; (c¢) inaccuracy of
solution of the linear system.

Errors of type (c), as well as direct round-off errors, are neglectable provided the numerical
scheme in use is stable and the problem “generic”. Note that some methods, e.g. differential and
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Rayleigh’s, but not integral, inherently suffer from ill-conditionness as N or the wavenumber in-
creases. Important though relatively rare non-generic, or degenerate, cases usually occur in studies
of whole families of problems, rather than isolated ones. Examples include Wood’s anomalies, very
close boundaries, occasional isolated eigenvalues.

For errors of type (a), in many cases a priori estimations via functional-analytic and operator-
theoretical methods are available, which, at least, can moderate one’s optimistic expectations about
the overall convergence rate. Errors of type (b) in collocation methods are commonly attributed to
numerical quadratures. Combinations of collocation and quadrature methods with balanced conver-
gence properties are known as quallocation methods. In periodic diffraction problems, in contrast to
diffraction on a compact obstacle, there is one more source of (b)-type numerical error: evaluation
of grating Green functions and their normal derivatives. The problem is seen from the well-known
series representation (which we call, for brevity, the Green series), see e.g. [1, Egs. 3.19, 3.20].
Convergence of the series deteriorates as the distance between the Green function’s arguments (a
collocation node and a quadrature node) tends to 0. The modified integral method in a narrow sense
is a quallocation method that also specifies a summation rule for the Green series. In the simplest
case, the series is truncated symmetrically at lower summation index —P and upper index P; where
P is an integer defined by

P ~ kN. (7)

The ”truncation ratio” k is optimized at small values of N and is kept constant as IV increases. It
has been found [19] that x = 1/2 is a reasonably good choice for many practical computations.

Quadratures in our codes are performed by rectangular rule with single-term corrections:
for the Green function - taking into account its logarithmic singularity [1, Egs. 3.113, 3.114]; for
the normal derivatives of the Green function - accounting for the profile curvature [1, Eq. 3.106].
For gratings with smooth boundaries, this method yields the overall error estimate O(N~3) for
diffraction amplitudes and efficiencies in both polarizations. However, the above simple truncation
rule for the Green series is insufficient to match such accuracy of the quallocation. An easy remedy
is provided by Aitken’s §% acceleration [20] applied to the truncated Green series. The precision of
Aitken’s method for individual values of the Green series, especially at close arguments, is inferior to
that provided by the Kummer acceleration used in the IESMP code ([8] and earlier by Shestopalov
et al., see [21)], or by the Euler method [21], but one would not benefit from an the extra accuracy
in the end.

In presence of a profile with corners (piecewise linear), the profile’s curvature can be formally
described as a sum of J-terms concentrated at the corners. Correspondingly, we use two versions of
the quadrature formula involving the normal derivative of the Green function. (a) The collocation
and quadrature nodes are set in such a way that all corners are nodes; the curvature corrections are
replaced by corner terms according to [15, p. 120]. (b) The nodes are set in such a way that every
corner lies half-way between the nodes adjacent to it; in this case, no curvature-like corrections are
added. Both versions are found to yield approximately the same convergence rate O(N 2¢), where
0 < ¢ < 1 apparently depends on the profile geometry.

In practice, the accuracy of results depends also on the distribution of collocation points.
Better results are often obtained using the equidistant distribution along the arclength [8]. In case
of “non-function”, e.g. lamellar, profiles the parametrization by arclength is mandatory.

A note on the shortwave case. In case A/d < 1, e.g. for echelles or x-ray gratings, introduction of
any acceleration terms has an adverse numerical effect because of uncontrolled growth of coefficients

369



Diffractive Optics and Micro-Optics

in “asymptotically enhanced” theoretical estimations. Treatment of such situations remains a kind
of art. With all acceleration options turned off, it is often possible to obtain surprisingly good
convergence of efficiencies at orders of practical interest, and the energy balance very close to 1.

D. Validation of results

Some computations presented in Sect. 3 are aimed to challenge our codes at their limits, so a few
words regarding trustworthiness of the results are appropriate.

Workability of the programs has been confirmed in non-extreme cases by numerous tests,
including: (a) the reciprocity theorem, (b) energy balance (generalized in the lossy case), (c) sta-
bilization of results while doubling the number N of collocation points and varying the truncation
ratio P/N, (d) comparison with analytically available case of plane interfaces, (e) considering the
inverse (non-physical) radiation condition, (f) inserting fictitious boundaries with different geomet-
ric properties in a layer, (g) using different variants of collocation points distribution and shifts,
and (h) comparing results to published ones, or obtained by our other programs, or corresponded
to us by other researchers.

In complicated cases, a magnitude of the computational error can not be reliably deduced
from accuracy criteria based on a single computation (such as the energy balance and the inverse
radiation condition test). Much better are comparative studies, i.e. N-doubling or changing a con-
figuration of collocation points. All results presented here, have been confirmed by one or another
comparative tests, though some of the computations took a long time.

3. Numerical results

Refraction indexes for all our examples, except those corresponding to Fig. 3, are taken from [22], and

interpolated by cubic splines between the reference values. Data from [22] earned a good reputation

in calculations of multilayer structures in a broad spectral range, from EUV to FIR.
Computations were carried out on a Dual ntel® Pentium® 11T 1 GHz, 256 KB Cache

Workstation with 512 MB RAM, 133 MHz Bus clock, working under MS Windows® 2000 Pro.
Light is incident from vacuum.

A. Grating with very thin ozxide layer

Fig. 1 shows spectral dependencies of the absolute efficiency at the —1st autocollimation order in
the VUV range for a sinusoidal aluminium grating 3600 grooves/mm, 100 nm depth, with conformal
coating of different vertical thickness.

In this example, the minimal layer thickness ¢ = 0.25 nm is comparable to atomic dimensions.
In this case, the ratio t/A is very small, while d/\ and h/X\ are of order 1. According to the
criterion (Eq. 1), this case can be successfully treated by the PCGrate 2000 code. Calculation of
each point on Fig. 1 by PCGrate 2000 took less than a minute on above specified hardware, with
N = 400 collocation points, which gave energy discrepancy 10~2 or better. An error in the —1th
order efficiency measured by doubling N was of order 10~%.

For the PCGrate-S code, this example was very hard, because of the small ratio ¢/d which
lead to a close-to-singular behaviour of cross-boundary Green functions. In the most difficult case,
t = 0.25 nm, obtaining three stable decimals in the —1th order efficiency required N = 1750 in TE
polarization and N = 2000 in TM. Energy error was ~ 107°. With the truncation ratio x = 1/2,
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Fig. 1. Grating: 3600 gr/mm, sin, 100 nm depth, Al. Coating: Al;O3, thickness t. Mode:
—1st Littrow order at A = 75+ 155 nm. (a) TE, (b) TM.

calculation of each point took several hours. As the thickness ¢ increased, the number of collocation
points for the same accuracy could be reduced in inverse proportion.

In TE polarization, the agreement of results obtained by both codes, is very good at any
tried thickness. In TM, the agreement is very good for the bare grating and for the smallest thick-
ness of coating ¢ = 0.25 nm. We conclude that time and memory requirements of the exact solver
(PCGrate-S) and the accuracy of the approximate multilayer solver (PCGrate 2000) are comple-
mentary to each other, which makes helpful to use them in combination.

Maximum discrepancy between results from the two solvers (about 8 absolute percent) is
observed in TM polarization, at maximum layer thickness 1 nm, in the long wavelength part of the
spectrum. Here is a plausible explanation. Because of considerable grating depth and big jumps of
the refractive index, resonance phenomena in the oxide film, which interfere with PCGrate 2000’s
assumptions, begin to develop at a relatively small layer thickness. It is worth mentioning that
PCGrate 2000’s efficiencies in the "bad” region are almost independent on the layer thickness, i.e.
nearly coincide with the efficiencies of the bare grating.

Results shown on Fig. 1 are interesting not just as an extreme computational exercise.
Typical thicknesses of oxide coating that are investigated are some dozens nanometers [11,23]. Fig. 1
demonstrates that even a much thinner (by two decimal orders) oxide film diminishes reflectance
of the aluminium grating near the absorption edge 110 nm by several times. A similar effect of
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strong influence of an Al,O3 film with thickness just a few atomic sizes on the absolute efficiency
of multilayer gratings has been studied earlier, theoretically and experimentally, in the far shorter
wavelength ranges: soft x-ray and EUV [13].

B. Grating with thin coating: narrow anomalies

Figs. 2, 3 show spectral dependencies of the absolute efficiency at the —1st autocollimation order
in the VUV range, TE polarization, for a sinusoidal aluminium grating of period d = 300 nm and
depth hy = 120 nm, uncoated or coated by a MgFy layer with different thicknesses and sinusoidal
upper surface of various depths h;.

1
— ———bae h2=120 nm

------- conforma, h1 = 120 nm
nonconformal, h1=100 nm
nonconformal, h1=140 nm

08

o
o

absolute efficiency

o
>

02

190

wavel ength, nm

Fig. 2. Grating: d = 300 nm, sin, depth hy = 120 nm, Al. Coating: MgF5, depth h;. Mode:
—1 Littrow order at A = 70 + 190 nm, TE.

Graphs on Fig. 2 correspond to the uncoated grating and three different coating shapes:
conformal (h; = hy = 120 nm), non-conformal with thinner coating at the top (h; = 100 nm < hy),
and the opposite configuration, with thicker coating at the top (h; = 140 nm > hsy). Thickness of
coating in the pits of the profile equals 25 nm in all three cases. Similar shapes of deposited layers
are rather frequent in grating fabrication. The curve corresponding to h; = 140 nm is qualitatively
resembling its sibling for the conformal coating, though positions and shapes of resonances differ.
Contrary to that, the curve for Ay = 100 nm is much smoother, without sharp gaps in the working
range. Properties of non-conformal gratings like this could be exploited provided one were able to
control the shape of non-conformal layers during fabrication.
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Fig. 3. Narrow and sharp anomalies for refractive indices of MgF, taken from different
sources. Grating: same as on Fig. 2, conformal, ¢ = 50 nm, at A = 120 + 130 nm.

Efficiency curves on Fig. 2 are calculated using the refraction index table from [22]. When
using an older table from [24], the efficiency curves calculated with PCGrate-S (not shown) are
identical, within graphical precision, to those from [11].

Graphs on Fig. 3 represent resonance peaks of efficiency, calculated at a high resolution
in the range 120 + 130 nm, for a grating of the same type as previously (conformal, sinusoidal,
hi = hy = 120 nm, vertical thickness 50 nm, coating MgF5), with refraction indexes taken from two
different sources [22], [24]. This example, on the one hand, demonstrates a very good agreement of
our results with those published [11]. On the other hand, we see that not only positions and shapes
of the resonances, but their very existence, depend on the data used. Origins and consequences of the
uncertain knowledge of refractive indexes are discussed in detail in [7, Sect. 4A]. In our case, the half-
width of the peak (and the gap) of the efficiency curve near A = 120.25 nm, corresponding to data
from [22], is only about 0.2 nm, which compares to typical half-widths of absorption lines of atoms
in VUV [23]. In that small region, the real part of the refractive index undergoes a significant jump
(Fig. 4), and diffraction orders —3 and +2 disappear to the right of A = 120 nm. These peculiarities
stipulate the appearance of a high resonance peak. As far as we know, such a narrow and deep
resonance in the spectral characteristics of an ”artificial” (as opposed to a crystalline) grating is
revealed for the first time. On the efficiency curve corresponding to the data from [24], there exists a
resonance near A = 125.5 nm, which is absent on the former curve. The latter resonance’s amplitude
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Fig. 4. Interpolated real part of MgFs refractive index from Refs. [22] and [24].

is only about twice as big as that of the former, but its width is almost order of magnitude bigger.
Note also that a purely mathematical interpolation procedure has a visible effect on the efficiency
curves e.g. near A = 127 nm, where the interpolation-caused difference reaches about 9 absolute
percent. This is due to the fast oscillation of data in the range 100 <+ 130 nm and low density of
table data to the right of A = 125 nm. The resonance near A = 120.25 nm is not affected by the
interpolation freedom, because there are enough interpolation nodes nearby.

Calculations for Figs. 2,3 are not too burdensome. Already on 100 collocation points, we
achieve the energy error of ~ 10~%. Efficiency correction at doubling the number of collocation
points has the same order. Calculation of one point on the graphs required one to several seconds
on the computer specified above.

C. Grating with thick nonconformal layer

In this example we consider a deep golden grating with 1000 grooves/mm, sinusoidal profile of depth
h = 500 nm, covered by a dielectric layer of different shapes with refractive index 2. The grating
works in the near infrared range 750 + 1500 nm, in the —1st autocollimation order, which is the
only Bragg order existing under these assumptions.

The dielectric layer is either conformal, with vertical thickness 500 nm equal to the mod-
ulation depth, or non-conformal, formed by periodically, through d/2 = 500 nm, repeated semi-
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cylinders. Maximum of the upper profile exceeds that of the lower profile also by 500 nm.

Big thickness of the layer in either case stipulates existence of waveguide modes that cause a
strong energy redistribution in the spectral characteristics of the only existing order compared to the
grating without coating. In the non-conformal case, the narrow "neck” around the semi-cylinder’s
turn point makes the process even more intricate.

Our results are presented on Fig. 5 (a,b). Dr. Lifeng Li kindly provided us results for com-
parison in the conformal and bare grating cases, calculated by the program Delta, which is based on
the enhanced Chandezon method for multilayer conformal gratings [5]. Li’s results are also shown

on the figure. They agree with ours in 3-4 decimal places.
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Fig. 5. Grating: 1000 gr/mm, sin, 500 nm depth, Au. Coating;: dielectric v = 2, conformal or
semi-cylindrical, R = 500 nm, ¢ &~ 500 nm. Mode: —1st Littrow order at A = 750+ 1500 nm.

(a) TE, (b) TM.

Behaviour of the grating with upper profile consisting of semi-cylinders has little in com-
mon not only with behaviour of the bare grating, but also with that of the conformally coated
grating. It is quite interesting from theoretical and practical viewpoint. For instance, the absolute
diffraction efficiency above approx. 70% in TE polarization survives in the wide range 1100 <+ 1500
nm (Fig. 5,a). In that range, the mean value of efficiency is about 82%. Such a wide and elevated
efficiency ”shelf” is not observed on other graphs on Fig. 5. In TM polarization, the non-conformal
coating also yields a higher mean efficiency compared to the conformal case. Here again, like in the
example of Sect. 3B, we encounter some potentially useful properties of non-conformal coatings.
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For computations in this example, we used N; = Ny = 100 collocation points on the sinu-
soidal profiles and N; = 400 =+ 800 points on the semi-cylinder profile, which was approximated
by the Fourier series with 25 harmonics. At the upper value of N, the energy error was almost
everywhere 1072 or better, while the deviation of efficiency at the —1st order was about 102 or
better. Such a relatively poor accuracy is due to the field singularity near the turn points on the
boundary. For sinusoidal modulation, the accuracy beat 1072 already at N; = 100. Calculation of
each point lasted from 1 sec. to 8 min.

D. Covered Echelle Grating

Echelles are among the most popular gratings, and at the same time among the most difficult for
computations, especially those with dielectric coatings and working in the short wavelength range.

Our example in Sect. 3A shows that even a very thin oxide film on the grating surface may
lead to deterioration of its reflectancy, at wavelengths < 130 nm. To avoid this, a thin (10 + 100
nm) protection coating is applied on echelles’ surfaces; usual material is MgFs, but sometimes other
dielectrics are used. At a certain thickness of the coating film, waveguide phenomena come out to
affect the grating performance; as a result, the diffraction efficiency can either decrease or increase as
compared to the non-oxidized bare grating. Non-conformal layers provide a new freedom in design,
but the analysis of gratings becomes more complex.

Our last example deals with an aluminium echelle with 316 grooves/mm, working blaze angle
63.4 deg (r—2) and apex angle 90 deg. The grating works at the —47th order, TM polarization, and
the wavelength A = 120 nm. A protecting MgF, layer is applied. Consider three variants of its
thickness and shape. In all variants the coating’s upper boundary is a triangle with right angle at
the top vertex, which is situated 30 nm above the grating’s top vertex. The variants differ from
each other by the coating’s working angle, which is 63.4 deg (conformal case), or 62.9 deg, or 63.9
deg. Such a model of coating does not pretend to be the best description of a real structure formed
by the coating, but it is simple and possible, and accounts for a deviation of coating direction from
the substrate surface, which leads to a tapered shape on both slopes.

Fig. 6 presents angular dependencies of the grating efficiency. Also shown are results ob-
tained with another integral method program, IESMP (Integral Equation System Method with
Parametrization) [8, 14]. The latter results has been kindly provided by Dr. B. Kleemann.

All compared efficiency values agree in 3-4 decimal places in the conformal case and for bare
echelle. Both codes, PCGrate-S and IESMP, treat the profile shape exactly, as a polygon, rather
than using a trigonometric or a staircase approximation. Also in both codes the collocation points
are distributed uniformly along the boundary w.r.t. arclength. The obtained agreement leaves little
doubts about the accuracy of the corresponding curves.

In order to better understand possibilities of our program, we repeated the computations in
the bare case and the conformal case using trigonometric representation of the profile instead. A
good agreement of the efficiencies for the original and Fourier-approximated profiles for the bare
grating is not surprising. However, it happens to be quite different in case of conformal coating,
where the discrepancy at its maximum is about 6 absolute percent. We have enough evidence that
it is not a convergence issue. The most puzzling fact is that the discrepancy is almost independent
of the degree of trigonometric approximation. Corresponding curves on Fig. 6 refer to degrees 250
or 500, but the results are visually indistiguishable from those obtained with a degree 20 + 30. An
explanation of this interesting phenomenon is yet to be found. It can be due to a combination of
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Fig. 6. Grating: 316 gr/mm, echelle r-2, working angle A1 = 63.4 deg, Al. Coating: MgF5,
t = 30 nm, conformal or nonconformal sawtooth. Mode: —47th order, TM, A = 120 nm.

fast oscillations of the Fourier sums near the vertices and a resonance between two slopes of the
coating.

Fig. 6 shows that the conformal coating leads to a noticeable increment of efficiency over the
whole range of angles, by ~ 10% in average and 5% at the efficiency maximum. The non-conformal
coating with working angle 63.9 deg also increases the efficiencies, but the effect is smaller and
localized near the maximum. In contrast, the non-conformal coating with working angle 62.9 deg
strongly reduces the efficiency at its maximum and leads to a practically flat efficiency graph. Ge-
ometry in this case is such that the working facet receives a thin layer of MgFy, which narrows
approaching the vertex; the idle facet gets a fatty coating. Such a model of non-conformal structure
of real echelles has been proposed by experimentalists, who used it to explain significant loss of
efficiency (G. Baccaro and S. Zheleznyak, private communications, 2001-02). Results of our com-
putations admit this possibility. Efficiency of an echelle coated by such a non-conformal layer of
MgF, can be 30-40% less than that of the uncoated grating in the whole central angular range.
The efficiency is very sensitive to the deviation from conformal shape and to the vertical shift.

Computations in this example were carried out with N = 200 -+ 500 for the bare grating and
with N = 400 < 500 for the coated conformal and non-conformal gratings. Error of the efficiency in
the working order was less than 1%. In case of piecewise linear profiles many pairs of Green function
arguments can be obtained from each other by translations; corresponding Green function values
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are equal. There is an effective way to check for given arguments, whether we already encountered

a

congruent pair and calculated the Green function for it. This approach significantly reduces

computational time for echelles, lamellar profiles, etc., and even more — in case of conformal layers,
where the Green function values calculated on the upper side of the layer can be reused on the lower
side. Calculation for each point on Fig. 6 required several seconds to several minutes.
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