
electronic reprint

ISSN: 1600-5775

journals.iucr.org/s

Rigorous calculations and synchrotron radiation
measurements of diffraction efficiencies for tender X-ray
lamellar gratings: conical versus classical diffraction

Leonid Goray, Werner Jark and Diane Eichert

J. Synchrotron Rad. (2018). 25, 1683–1693

IUCr Journals
CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

J. Synchrotron Rad. (2018). 25, 1683–1693 Goray, Jark and Eichert · Diffraction efficiencies for tender X-ray lamellar gratings

http://journals.iucr.org/s/
https://doi.org/10.1107/S1600577518012419
http://journals.iucr.org/services/authorrights.html
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577518012419&domain=pdf&date_stamp=2018-10-08


research papers

J. Synchrotron Rad. (2018). 25, 1683–1693 https://doi.org/10.1107/S1600577518012419 1683

Received 10 May 2018

Accepted 3 September 2018

Edited by P. A. Pianetta, SLAC National

Accelerator Laboratory, USA

Keywords: diffraction gratings; diffraction

theory; computational electromagnetic

methods; X-ray optics.

Rigorous calculations and synchrotron radiation
measurements of diffraction efficiencies for tender
X-ray lamellar gratings: conical versus classical
diffraction

Leonid Goray,a,b,c* Werner Jarkd* and Diane Eichertd

aSaint Petersburg Academic University, Khlopin St. 8/3 Let. A, St Petersburg 194021, Russian Federation,
bITMO University, Kronverkskiy Pr. 49, St Petersburg 197101, Russian Federation, cInstitute for Analytical

Instrumentation, RAS, Rizhsky Pr. 26, St. Petersburg 190103, Russian Federation, and dElettra – Sincrotrone

Trieste SCpA, SS 14 – km 163.5 in AREA Science Park, Basovizza, Trieste 34149, Italy.

*Correspondence e-mail: lig@pcgrate.com, jark@elettra.eu

When reflection gratings are operated at grazing incidence in the extreme off-

plane configuration and the incident beam trajectory is parallel to the grooves,

the diffraction into the first order can be more efficient than in the classical

orientation. This situation is referred to as the conical diffraction case. In the

classical configuration the grooves are perpendicular to the incident beam and

thus an efficiency-reducing shadowing effect will be observed at very grazing

angles. It was recently shown that a laminar grating could provide symmetric and

relatively high efficiencies in conical diffraction for diffraction even of photons

with large energies of the order of 4 and 6 keV. For photon energies in the

tender X-ray range, accurate computing tools for the calculation of diffraction

efficiencies from gratings with simple coatings have not been available.

Promising results for this spectral range now require the development of tools

for modelling the diffraction efficiency expected in optical instrumentation,

in which the provision of high efficiency in the indicated spectral range is

mandatory. This is the case when weak sources are to be investigated, like in

space science. In this study it will be shown that scalar calculations are not

appropriate for this purpose, while newly introduced rigorous calculations based

on the boundary integral equation method, implemented in the PCGrate1 code,

can provide predictions that are in agreement with observed diffraction

efficiencies. The agreement is achieved by modelling the exact surface profile.

This applies for both the conical diffraction configuration and for the classical in-

plane configuration, in which a significantly lower efficiency was obtained. Even

though the profile of the presented grating was not perfect, but significantly

distorted, the calculations show that efficiency-wise the structure provided

already more than 75% of the ideally expected efficiency for conical diffraction.

This is a very promising result for further optimization of diffraction gratings for

use in the tender X-ray range.

1. Introduction

The soft X-ray range was defined by Attwood (1999) to cover

those photon energies in the X-ray range that cannot be used

for radiography experiments due to their very limited pene-

tration range; this photon energy range extends from 300 eV

to 8000 eV (or, in terms of wavelength �, from 4.1 nm to

0.15 nm; wavelength � and photon energy E are related via the

simple formula �E = 1239.852 nm�1 eV�1). Within this region

the photon energy range 2 keV < E < 8 keV is referred to as

the tender X-ray range by Attwood (1999), as the X-rays are

monochromated like harder X-rays by the use of bulk struc-

tures, i.e. periodic crystal structures (see, for example,

ISSN 1600-5775

# 2018 International Union of Crystallography

electronic reprint



Matsushita & Hashizume, 1983). Lower photon energies

instead are usually monochromated by surface relief struc-

tures, i.e. by reflection gratings (see, for example, Hutley,

1982).

Reflection gratings were classically found to be the most

flexible devices for the monochromatization of visible and UV

light (see, for example, Hutley, 1982). This is due to the fact

that all important parameters, like the groove density, the

grating orientation with respect to the incident beam and

the angle of incidence, can be freely chosen. This situation

changes significantly when the application range is extended

towards soft X-rays as, according to Lukirskii et al. (1963), one

now needs to operate the structure at grazing angles of inci-

dence below the critical angle for total reflection �crit. When

using a diffraction grating in the classical in-plane orientation,

then the direction of the mth diffraction order for a given

wavelength � can be obtained from the grating equation,

m� ¼ p cos � � cos �ð Þ; ð1Þ
where p is the pitch (i.e. period or the groove spacing) of the

structures in the plane of incidence (see Fig. 1), and � and �
are the angles of grazing incidence and exit. m is positive for

diffracted orders that are found between the incident beam

and the direction of the specularly reflected beam. Then, in

order to achieve monochromatization for m 6¼ 0, the angles �
and � need to be different (see, for example, Hutley, 1982).

Depending on the grating profile, parts of the incident and

exiting beams will be subject to ‘shadowing’ effects, as

discussed by Lukirskii et al. (1963), which are illustrated in

Fig. 1. The areas shown in black are either not illuminated by

the incident beam or they cannot diffract intensity into the exit

direction. Then, either a fraction of the incident power can

no longer leave the grating structure, e.g. from grooves of

rectangular shape as shown in the lower part of Fig. 1, or a part

of the structure cannot be the source of the exiting waves, as

will be observed in the case of sawtooth (triangular) profiles

(upper part of Fig. 1). Both effects will lead to discontinuities

in the wavefront shape of the diffracted beam. Intuitively one

would assume that the sawtooth profile (top of Fig. 1) could

direct all incident power into only a single diffraction peak,

which would be in the direction corresponding to specular

reflection at the inclined groove surface. However, the reci-

procity theorem requires that the efficiency of the diffraction

is the same for a given deflection angle (� + �) also in the

reversed trajectory (Maystre & Petit, 1976). The loss of

photons in the shadow areas painted black is thus responsible

for the reduction of the first-order efficiency. It was shown

using rigorous calculations by Maystre & Petit (1976) and

confirmed in experiments by Maystre et al. (1980) that the

related diffraction efficiency for a given deflection angle can

be predicted simply as the reflectivity of the grating coating

material multiplied by the ratio of the unobstructed areas and

the total area, as proposed by Lukirskii et al. (1963). For a

sawtooth groove profile the latter ratio is the minimum of the

ratios sin� / sin� and sin� / sin� as derived by Maystre & Petit

(1976). For a given grating structure this ratio decreases with

increasing photon energy, and for tender X-rays can be of the

order of just a few percent or even smaller. This results in very

small efficiencies for in-plane diffraction into a given order

even though the reflectivity will be high. For this reason, in the

few reported cases for gratings with simple coatings (e.g.

Petersen, 1986), the transmission through grating mono-

chromators was found to fall off rapidly in the tender X-ray

range to an unusable level of mostly scattered light.

Greig & Ferguson (1950) were the first to point out that

the shadowing can be avoided in sawtooth gratings when the

incident beam trajectory is parallel to the grating grooves. This

applies also to laminar grating profiles. In this orientation the

intensity is diffracted off-plane, i.e. out of the plane of inci-

dence, into a cone, the centre axis of which coincides with the

intersection line between the plane of incidence and the

grating surface. This advantageous situation is described

either as the extreme off-plane configuration or as the conical

diffraction scheme, in which the incident beam observes

a periodic system of small parallel micro-mirrors. Relatively

large efficiencies in this configuration have already been

observed for softer X-rays with photon energies from about

300 eV up to 1500 eV by Werner (1977) and Cash & Kohnert

(1982). This permits the use of such objects in space science

instrumentation, which needs very efficient mono-

chromatization schemes as the sources are very weak. The use

of higher photon energies was not reported until very recently

when efficient conical diffraction was observed by Jark &

Eichert (2015, 2016) also for tender X-rays with photon

energies >4 keV. At this point then the need exists to be able

to predict the grating performance reliably in the previously

unexplored tender X-ray range, where very small angles of

grazing incidence will have to be used according to Lukirskii et

al. (1963). For meaningful predictions the simulation of a real

grating profile, which may be distorted compared with the

ideal one, has to be possible. A solution to this theoretical

problem will be discussed here; then it is investigated whether
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Figure 1
Sketch of the shadowing when diffraction gratings with sawtooth (top)
and laminar profile (bottom) are operated at grazing incidence. p refers to
the groove spacing, while � and � are the angles of grazing incidence and
exit. The black areas are not illuminated or are not contributing intensity
to the exiting beam, while the grey areas will diffract properly.
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for efficient diffraction the grating parameters can still be

chosen freely.

This report now deals only with the efficient use of reflec-

tion gratings with simple coatings in the tender X-ray range.

Thus it needs to be mentioned that, recently, promising

developments were made for enhancing the previously

observed low diffraction efficiencies of simple reflection

gratings for photon energies above 2000 eV by the addition of

appropriate multilayer coatings, for example by McNulty et al.

(1997), Ishino et al. (2006), Choueikani et al. (2014) and Senf

et al. (2016). In this case the shadowing effect in the classical

orientation is overcome by the ‘transparency’ of the multilayer

coating. The related high diffraction efficiencies also for fine-

pitch gratings (Voronov et al., 2015, 2016) can be reliably

calculated theoretically (Gorai, 2005; Goray & Egorov, 2016).

It goes beyond the scope of the present study to discuss more

details of this approach.

2. Prediction of grating diffraction efficiency

2.1. Limitation due to the critical angle operation

We will consider the two extreme geometrical orientations

of the grating with respect to the incident beam, i.e. the case of

classical in-plane operation and the case of conical diffraction.

The angular positions of the diffraction orders for the first case

are given by equation (1). In combination with grazing inci-

dence both angles � and � will be small and the cosine function

in equation (1) can be developed into a series expansion, so

that (1) can be written in the form

2m�

p
¼ � 2 � � 2 ¼ � þ �ð Þ � � �ð Þ: ð2Þ

The validity of the reciprocity theorem and the requirement to

operate any optical component efficiently with grazing angles

below �crit will now establish limiting values for the sum and

the difference of the angles on the right-hand side of (2). This

limit will here be referred to as the ‘critical angle operation’.

In an asymmetric profile, like a triangular or sawtooth profile,

the angle of grazing incidence with respect to the inclined

groove surface must stay below the critical angle for total

reflection; this is also required for the case of the exiting beam.

Consequently, the requirement for efficient diffraction is that

the deflection angle (� + �) into a given order needs to be

smaller than 2�crit. For a laminar profile the reciprocity

theorem requests that both the angle of grazing incidence �
and the diffraction angle � are smaller than the critical angle.

For monochromatization they need to be different. Then for a

laminar grating both terms on the right-hand side of (2) can at

most be identical with the critical angle �crit. For a sawtooth

profile the sum term can be twice as large.

Away from absorption edges of a material with the refrac-

tive index n the critical angle is defined by

�crit ¼
�
2 1 � nð Þ�1=2

; ð3Þ
when only the real part of the refractive index is considered.

In this condition in the soft X-ray range the refractive index

decrement (1 � n) is a positive number which, according to

James (1967), is given by

ð1 � nÞ ¼ NA

2�
r0 �

2 �
Z

A
; ð4Þ

where NA is Avogadro’s number, r0 is the classical electron

radius, � is the material density, � is the photon wavelength,

and Z and A are the atomic number and the atomic mass of

the material, respectively. Then, from (3) and (4), one finds

that the critical angle varies linearly with the photon wave-

length with

�crit ¼ a�; ð5Þ
where a = 64 mrad nm�1 for the commonly used gold coating

[for Pt it is �0.072 nm�1 (see Henke et al. (1993)]. For the

desirable use of the grating away from the critical angle

operation we then obtain from equation (2) a limit for the

period for a laminar profile of

pmin;lam >
2

a2�
mj j; ð6Þ

while for a sawtooth profile it is

pmin;saw >
1

a2�
mj j: ð7Þ

With 1/a2 = 244 nm2 for Au we have

pmin;lam > 488 nm2
� � jmj

�
ð8Þ

and

pmin;saw > 244 nm2
� � jmj

�
: ð9Þ

Now on the one hand, in order to minimize the obtainable

spectral resolution, one has to strive for small groove spacing;

and, technically, periods as small as �280 nm (groove density

’ 3600 mm�1) are now feasible with good shape fidelity. On

the other hand, for efficient diffraction of high-energy tender

X-rays with E = 8 keV (� = 0.15 nm), equations (8) and (9)

require gratings with pmin,lam > 3250 nm (groove density <

300 mm�1) and pmin,saw > 1625 nm (groove density <

600 mm�1). It is thus the combination of the critical angle

operation and of the shadowing effect in higher groove density

gratings which leads to the rapidly decaying monochromator

transmission, when the photon energy of 2 keV is approached

(e.g. Petersen, 1986). This latter photon energy coincides

with the critical angle limit for a grating with p = 820 nm

(1220 mm�1), which will be discussed here. Conequently the

operation range of similar high-groove-density gratings cannot

be extended any further into the tender X-ray range.

However, the situation changes completely when the grating is

operated in conical diffraction. Then the direction of the mth

diffraction order of a given wavelength � can be obtained from

the general grating equation, when expressed for conical

diffraction, in the form given by Werner (1977),

�m�= sin � ¼ p sin �� sin 	ð Þ; ð10Þ
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where � and 	 are the polar angles of incidence onto the

surface and of diffraction, respectively, and � is the azimuthal

grazing incidence angle (the grazing angle of a rotation of the

dispersive plane; see Fig. 2).

Assuming the incidence polar angle � to be zero (for

symmetrical profiles) or to be small (for blaze profiles) and

sin	 ’ 1 for fine-pitch gratings working in conical grazing-

incidence diffraction for the first orders, one can derive

m�

�
’ p: ð11Þ

Using (3) for the expression of � near the critical angle one

obtains finally

pmin >
jmj
a

: ð12Þ

Contrary to schemes of classical diffraction, equation (12) is

valid for any groove profile and does not depend on the

wavelength. In fact, for first-order diffraction by use of gold-

coated gratings, equation (12) puts a limit on the very small

number pmin > 15.6 nm, which is achieved in all practical cases.

It is worth noting that these rather rough evaluations for

minimal periods are just the scalar theory conclusions and

they must be verified against rigorous electromagnetic theory

evaluations.

2.2. Scalar efficiency behaviour

An important feature in X-ray gratings is the small �/p and

h/p ratios, where h is the groove depth. The grating operates in

the scalar regime if �/p < 0.2 at h/p < 0.1 and the angles of

incidence and diffraction are close to the surface normal. This

is the situation discussed in text books (e.g. Born & Wolf,

1980). The scalar regime is characterized by the absence of

polarization effects and anomalies, and the efficiency of

perfectly reflecting (conducting) gratings can be determined

from the universal curves plotted for various groove profile

types by Maystre & Petit (1976). These curves are unique

functions of the ratio h/p only and valid for gratings with

various periods, depths and coating materials. Then in classical

in-plane diffraction the absolute efficiency increases when

the period increases. However, the observed variation of the

efficiency with variation of the groove density is different from

the expectations, as extrapolated from scalar theory, which

postulates that the product of resolution with luminosity is

constant. The efficiency 
 limits derived from the scalar

diffraction theory for perfectly conductive gratings according

to Born & Wolf (1980) are the following,


 ¼ 40:4% for laminar;


 ¼ 100% for sawtooth:
ð13Þ

The fundamental limitation in the use of the scalar approach

for the calculation of the efficiency of bulk and multilayer

gratings is given by the requirement that the incidence angle

not be very grazing. According to Vidal et al. (1985) the angle

of incidence with respect to the surface normal should not

exceed 40� for bulk gratings and 45� for multilayer ones.

Under grazing incidence at �/p < 0.1 . . . 0.05 the scalar

approximation and even the rigorous perfectly conducting

theory are generally unacceptable, especially for shorter

periods, for the transverse magnetic (TM) polarization and

for high orders. Gorai (2005) has already demonstrated by

different rigorous calculations based on the differential,

boundary integral equation, modal and Fourier-modal

(coupled-wave) methods that the absolute efficiency of bulk

and multilayer X-ray gratings changes unpredictably when

compared with predictions based on the scalar theory even at

very low �/p, as the period, groove profile, incidence angle,

wavelength and coating material vary. Only the optimum

depths of standard groove profiles, which correspond to a

blaze wavelength, can be predicted with an accuracy of a few

dozens of percent as shown by Neviere & Flamand (1980). For

classical diffraction,

jmj�blaze ¼ 4h cosðD=2Þ; for laminar;

jmj�blaze ¼ 2h cosðD=2Þ; for sawtooth;
ð14Þ

where D is the deviation angle between the incident and the

diffracted beams. Now for grazing-incidence conical diffrac-

tion D/2 is not close to �/2 but can be rather small, like in near-

normal-incidence classical diffraction. The conical type of

diffraction is characterized by high luminosity when the angle

of grazing incidence along the grooves is smaller than or equal

to the critical angle. So, equations (14) are valid if we change

D/2 to the incidence angle near the critical angle of the total

external reflection. Then, equation (14) can be reformulated

for conical diffraction mounts according to Vincent et al.

(1979) as

jmj�blaze ¼ 4h sin �; for laminar;

jmj�blaze ¼ 2h sin �; for sawtooth:
ð15Þ

It is worth noting that equation (15), contrary to equation

(14), does not include polar incidence and diffraction angles
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Figure 2
Schematic of conical diffraction. The angles � and 	 are the polar angles
of incidence onto the surface and of diffraction, and � is the azimuthal
grazing incidence angle.
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and depends only on the grazing-incidence azimuthal angle �.

Consequently the optimal groove depth does not depend on

the period of a grating working in conical diffraction. Conse-

quently when the reflectance of a grating coating material is

close to 100% the absolute diffraction efficiency of a grating

with properly matched groove depth may be close to the

theoretical scalar limit (13) for the chosen groove profile. But

again, as is the case for equations (6), (7) and (12), the suit-

ability of equations (14) and (15) for the prediction of the

exact positions and values of local and global maxima should

be checked by rigorous efficiency calculus.

2.3. Exact electromagnetic theory for very small
wavelength-to-period ratios

The theory covered here is necessarily brief because its

main parts including peculiarities of diffraction problems at

small ratios of �/p and a more general treatment of the energy

conservation law applicable to multilayer absorption gratings

have been described at considerable length by Goray &

Schmidt (2014). The electromagnetic formulation of diffrac-

tion by gratings, which are modelled as infinite periodic

structures, can be reduced to a system of Helmholtz equations

for the z-components of the electric and magnetic fields in R2,

a finite-dimensional real vector space of dimension two, where

the solutions have to be quasiperiodic in the x-direction,

subject to radiation conditions in the y-direction, and satisfy

certain discontinuity conditions at the interfaces between

different materials of the diffraction grating. The actual

number of identical or different borders and layers can be

large enough, up to a few thousand, for hard X-ray applica-

tions. In the case of classical diffraction, when the incident

wavevector is orthogonal to the z-direction, the system splits

into independent problems for the two basic polarizations as

depicted in Fig. 3, whereas in the case of conical diffraction the

boundary values of the z-components, as well as their normal

and tangential derivatives at the interfaces, are coupled. For

gratings in grazing-incidence conical diffraction we refer to

linearly polarized incident light whose electric field vector lies

in the plane of incidence as the transverse electric (TE)

polarization (or p-polarization). Then we define the TM

polarization (s-polarization) when the electric field vector lies

almost parallel to the plane of the grating. A grating diffracts

the incoming plane wave into a finite number of outgoing

plane waves considering reflected as well as transmitted

modes, i.e. orders. The program PCGrate1 (http://www.

pcgrate.com/) computes efficiencies of these orders for an

arbitrary number of layers with any boundary profile type.

It is well known that the solutions of the two-dimensional

Helmholtz equation with any rigorous numerical code meet

with difficulties at small �/p. While the standard boundary

integral equation methods are robust, reliable and efficient,

they exhibit poor convergence and loss of accuracy in the

long-period range due to numerical contamination in quad-

rature. Increasing matrix size and enhancing computation

precision, as well as applying convergence speed-up techni-

ques, which are successfully explored in short- and mid-period

ranges, lead to unreasonably stringent requirements for

computing times and storage capacities at long periods and

large quantities of layers. In practice, the convergence and

accuracy of efficiency computation significantly depend on a

proper choice of trial functions, discretization schemes and

respective quadrature rules. Usually, one of the collocation

methods (method of moments) is used with the distribution of

points on a uniform grid. In spite of many research efforts and

the increasing power of modern computers, computation of

the kernel functions remains a time- and accuracy-critical part

of boundary integral equations and other methods for periodic

structures, and especially for �/p << 1. In order to accelerate

the convergence of the series representing kernels of the

respective operators, different acceleration techniques are

applied. While at least one discretization point per wavelength

is required to reach efficiency convergence for the usual

boundary integral equation methods in X-rays (�20 is

required in the visible range), the modified integral method

(MIM) works reliably and fast despite a very small number

N of discretization (collocation) points (the main accuracy

parameter) per wavelength used in the approach in the X-ray–

EUV range. For example, if a period includes N = 1000 and

�/p = 1 � 10�7 then only 1 � 10�4 points per wavelength is

required for the MIM. In the code PCGrates, which is based

on the MIM, the earlier discovered peculiarity is used in the

case of gratings and rough mirrors (e.g. Goray & Lubov, 2015)

working at very small �/p: Introducing known speed-up terms

in integral methods produces an adverse numerical effect

because of the ensuing uncontrolled growth of coefficients in

analytically improved asymptotic estimations (Goray & Sadov,

2002). In that case, however, the profile depth, the bi-layer

thickness (for multilayer gratings) and the radiation wave-
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Figure 3
General schematic of diffraction from a periodic structure for a wavefield
with two orthogonal field components for an arbitrary angle of incidence
and polarization. The TE component of the incident wavefield is
considered to be in the plane of incidence, while the TM component is
orthogonal to it. The polarization angle � refers to the inclination angle of
the polarization vector with respect to the TE plane for the incident
beam. The polar orientation angle ’ is connected to the azimuthal grazing
incidence angle � via ’ = �/2 � �. For the case of conical diffraction � is
used in equation (10) and defined in Fig. 2.
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length should be of the same order of magnitude. This is also

true for echelles working at any wavelength at high orders.

The MIM transforms the problem of the system of Helm-

holtz equations into a system of integral operator equations

over profile curves. We combine in PCGrate1 the so-called

direct (using the second Green formula) and indirect (using

single and double layer potentials) approaches. The solvers

only deal with boundary values of the fields and their normal

and tangential derivatives. The value of the field in the layers

can be found using the boundary data and Green formula.

Then, a down–up recursive procedure can be applied using

recurrence formulas for initial values of the fields and their

derivatives. Thus, both far-zone (amplitudes, phases, effi-

ciencies) and near-zone (absorption, electromagnetic fields

and their derivatives) data can be calculated for various

groove profiles (including multi-polygonal) and layer

(conformal or non-conformal) types, as well as for different

substrates and wavefront shapes. In order to account for

rigorous random surfaces in the X-ray range we use an infinite

beam (plane wave) and assume that the random rough surface

length repeats itself for a given large-period grating having

a number of random asperities. This classical model implies

using infinite grating samples together with intensive Monte

Carlo computations (Goray & Lubov, 2015; Goray & Schmidt,

2014).

3. Rigorous efficiency results for perfect laminar
gratings

As an example of absolute efficiency predictions using the

rigorous method described above we have calculated perfect

laminar gratings to check some conclusions derived in x2.2

by using the phenomenological approach. At the here chosen

grazing angles of incidence, the results for the TE and for the

TM modes are identical. Fig. 4 shows the absolute TE effi-

ciency in the first order of a lamellar Au grating optimized for

� = 0.154 nm versus incidence angle in the in-plane mount for

different frequencies: 300 mm�1, 1000 mm�1 and 5000 mm�1.

According to equation (6) only the first grating could still be

used in conditions away from the critical angle operation and

thus one expects to find diffraction efficiencies of the order of

10%. The other two gratings with higher groove density will

present significantly lower efficiencies. The depths of the

grooves have been chosen initially using equation (14) and

were then optimized by rigorous efficiency calculus in order

to check the suitability of the scalar approach (Born & Wolf,

1980) for the optimization of this parameter. The top-width-

to-bottom-width ratio of the lamellar groove profile for all

gratings is the same and equal to 4:5. This ratio is applied in all

calculations, and the results are only a little different from

those for the ratio 1 :1. As one can see in Fig. 4, the maximum

efficiencies are threefold larger for the 300 mm�1 grating in

comparison with the 1000 mm�1 grating, as predicted by the

scalar theory. The rigorously obtained optimal depth h ’
4.8 nm for the grazing incidence angle � = 0.45� differs from

the scalar value predicted by equation (14) for the 300 mm�1

grating by 20%. The same discrepancy in the depth prediction

exists for the 5000 mm�1 grating. For the 1000 mm�1 grating

this discrepancy is even larger with �30%. For the 5000 mm�1

grating the maximum efficiency is then ninefold smaller in

comparison with the maximum efficiency of the 1000 mm�1

grating. This is about twofold worse than the scalar theory

predicts. As is predicted by equation (14) for frequencies

higher than 300 mm�1, the shorter periods provide smaller

absolute efficiencies.

The angular dependence of the efficiency of the Au

1220 mm�1 perfect laminar grating for various groove depths

is shown in Fig. 5 for the TE polarization of the incident

radiation at � = 0.207 nm. The calculated efficiency is rather

low in accordance with the expectation from equation (8) for

the present grating, which at wavelengths shorter than 0.6 nm

sees the grating to be used beyond the critical angle regime.

The exact optimal depth of h = 4.4 nm at the grazing incidence

angle of �0.6� differs for this grating from the scalar value of
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Figure 4
Rigorously calculated efficiency of in-plane laminar Au gratings
optimized for � = 0.154 nm versus incidence angle for various groove
densities and rigorously optimized depths.

Figure 5
Rigorously calculated efficiency of in-plane laminar Au 1220 mm�1

gratings calculated for � = 0.207 nm versus incidence angle and for
various groove depths.
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�2.9 nm predicted by equation (14) by more than 30%. The

maximal absolute efficiency of more than 3% can be reached

in the in-plane orientation for a perfect lamellar groove profile

with a top width of 370 nm. As one can see from Fig. 5, the

angular-dependent efficiency curves may have two maxima,

in accordance with the influence of the optimal depth and

reflectance of a grating material under grazing incidence. The

scalar approach cannot predict these two maxima.

For conical diffraction mounts, as one can see in Fig. 6, the

efficiency maxima and the curve shapes are almost the same

for differently dense Au gratings having the same depth, as

is predicted by equations (12) and (15). For this conical

diffraction efficiency calculus we have used � = 0�, h = 5 nm

and a symmetrical lamellar profile with a top-width-to-

bottom-width ratio of 1 :1. The maximum absolute efficiency

in this condition is three times higher than the maximum

efficiency of the 300 mm�1 grating in the in-plane configura-

tion as presented in Fig. 5. For smaller grazing incidence

angles and higher groove depths the maximum efficiencies in

conical diffraction may be even larger and would thus be close

to the absolute theoretical limit given in equation (13).

4. Discussion of experimental data

The experimental data for the diffraction efficiency in conical

diffraction was compared with a simple prediction by scalar

theory in the original publications by Jark & Eichert (2015,

2016). This allowed one to conclude qualitatively that the

measured efficiency was relatively high and that it was

maximum for the first order approximately at the expected

angle of grazing incidence. However, the agreement was not

completely satisfying and a successive closer inspection of the

grating profile with atomic force microscopy (AFM) gave

arguments for this. Indeed the grating profile was found to be

distorted compared with the projected profile. In addition,

further analysis was made also for the classical orientation. In

this case, according to equation (8), the diffraction took place

with angles of grazing incidence or diffraction, which are

always steeper than the critical angle. This will give rise to

significantly transmitted intensity through the coating, which

might be partly back-reflected in the valleys. Neither this latter

condition nor the profile distortion can be accommodated in a

scalar calculation approach. Consequently, in order to make

meaningful predictions, the original and the new data were

compared with the prediction by use of the required rigorous

calculations, which take into account all reflected and trans-

mitted intensities.

4.1. Parameters of the test grating

A comparison between the experimental results and the

model expectations is made for the previously reported

parameters. The grating was produced in 1990 and has been

discussed by Jark (1992). It was projected with a laminar

profile with tops of width ’ 370 nm, valleys of width ’ 450 nm

and depth h ’ 7 nm. The profile was etched into a polished

silicon carbide (SiC) substrate measuring 50 mm � 50 mm �
10 mm on which it covered symmetrically a width of 32 mm

and a length of 50 mm. This profile, including also the

unetched borders, was then coated with an Au layer of

thickness 23 nm. Then in the unetched border sections the

roughness statistics for the original substrate should have been

replicated in the coating surface. The final real surface profile

was measured systematically very recently by AFM. The

profile, presented in Fig. 7 for two periods, is a smoothed

average over many scan fragments. This profile is the basis

for the calculations. The etched profile was found to not be

perfectly laminar; instead an additional bump was found in the

centre of any profile top. This bump sticks out of an otherwise

not flat but concave top. The AFM scans, set for sampling

spatial frequencies between 0.5 mm�1 and 50 mm�1, also indi-

cate the presence of a significant amount of scratches with

widths ranging from 25 nm to about 100 nm. These scratches

are present in the unetched border sections and also in the

etched structure in the valleys as well as in the tops of the

profile. Evidently the etching process did not lead to any

smoothing of the scratches. Including the scratches, a rela-

tively large surface roughness with values of the order of
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Figure 6
Rigorously calculated efficiency for conical diffraction from laminar Au
gratings with a depth of 5 nm optimized for � = 0.154 nm versus azimuthal
incidence for the same groove densities presented in Fig. 4. The critical
angle for the Au coating is at 0.56�.

Figure 7
Smoothed averaged profile as used for the simulations, which is obtained
from many scans by use of an AFM on the 820 nm-periodic Au groove
grating.

electronic reprint



1.5 nm r.m.s. is derived in the flat regions. The slope at the

sides of the tops of the profiles and of the central bumps, as

presented in Fig. 6, is very similar in both positions, �80 mrad

(or 4.5�). This slope is real and is not an artefact introduced by

the shape of the AFM tip.

Since its production several sets of efficiency data have been

recorded using the grating at different times, with different

groove orientation and in different spectral ranges. According

to the criterium for the critical angle operation given in

equation (8), this grating can only be used efficiently for in-

plane diffraction in the lower-energy soft X-ray range, E <

2 keV, and the diffraction will be rather inefficient at higher

photon energies. Alternatively, according to equation (12), in

conical diffraction the grating should provide high efficiencies

throughout the entire soft X-ray range and even at higher

photon energies. The experimental data in the tender X-ray

range were then taken in both orientations at higher photon

energies, mostly at 4 keV (� = 0.307 nm) and at 6 keV (� =

0.21 nm). The entire available data set with significantly

different characteristics now presents a very challenging

problem to any software for the calculation of grating effi-

ciencies. The principal question is thus whether these data

can be predicted with reasonable sample properties for the

random surface roughness and accounting for the real groove

profile. For the data interpretation it needs to be recognized

that the presented data and the AFM scan were obtained at

arbitrarily choosen positions. Within the sampling area chosen

for the AFM scan of 5 mm � 5 mm the groove depth variation

is found to be as large as 1 nm. A similar variation can also be

assumed between the different probed areas. So, in principle,

for each data set an optimum varying groove depth as well as a

groove profile shape could be derived. However, this will not

be done here. Instead a single data set is discussed and aver-

aged. Considering the significant variation of the calculated

efficiencies with varying groove depth, as shown in Fig. 5, the

confidence interval for the calculated efficiency data corre-

sponds for each point to about 20% of the maximum calcu-

lated efficiency in each plot. Then the confidence interval is

at least two times larger than the presented error bars for the

experimental data, which are discussed in the following.

4.2. Efficiency calculus for the real grating and comparison
with measurements

The most interesting result found in the previous experi-

ment by Jark & Eichert (2015) for the conical diffraction

configuration was the relatively high first-order efficiency of

�20% each in two symmetrically oriented diffraction peaks

for a photon energy of 4 keV. The experimental data up to the

third-order diffraction are presented in Fig. 8, where they are

compared with the expectations from the rigorous approach

taking into account the real grating profile with a valley depth

of �7 nm, the bump as shown in Fig. 7 and an r.m.s. surface

roughness of 1.5 nm r.m.s. The experimental data for the

conical diffraction are derived from images taken with a CCD

camera mounted behind a transfer lens and a fluorescence

screen. The limited sensitivity of the system resulted in an

absolute error of �e = 0.01 for the efficiency in all orders. The

theoretical critical angle for the Au coating is 1.12�.

The calculated angular dependence of the efficiency as well

as the absolute values vary rather significantly with the

modulation depth next to the central bump on the top surface

of the profile. This variation is especially pronounced in the

calculations for the zeroth and the third order. In light of this,

and considering the related confidence intervals, the overall
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Figure 8
Comparison of the measured grating efficiencies for a photon energy of 4 keV (� = 0.307 nm) for different orders (zeroth to third) in the conical
diffraction scheme as measured by Jark & Eichert (2015) with the calculations using the rigorous approach accounting for the real grating profile (solid
line). The prediction by the scalar theory is shown by the dashed line.
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agreement of the calculations with the experimental data even

for higher diffraction orders is rather satisfying.

Practically speaking it is very promising that the efficiency

for the technically more relevant first order can be predicted

with rather small error. This applies when one considers the

real and not ideal groove profile. Even though the surface

roughness is rather high at 1.5 nm r.m.s., this parameter does

not affect the first-order efficiency very much. In fact, the

expected efficiency for zero roughness is only slightly larger

at about 23%.

At this point we ask whether the simple scalar approach can

be used for making some predictions? Thus in Fig. 8 we also

present as dashed lines the predictions with the scalar theory,

in this case for an ideal laminar profile with a top-width-

to-bottom-width ratio of 0.45 :0.55. On the one hand, the

predictions using the rigorous approach show relatively little

variation for the first-order efficiency with variation of the

bump in the real profile. On the other hand, the prediction

with the simple scalar model for this more relevant order is

significantly different compared with the rigorous calculations.

Consequently the scalar approach provides rather unreliable

predictions, which is even more the case for higher orders and

especially towards steeper angles of incidence. As far as the

angular dependences are concerned, the scalar approach only

succeeds in indicating the position for minimum efficiency into

the zeroth diffraction order, while it cannot predict any other

extreme performance (minimum/maximum).

The angular dependences of the diffraction efficiencies in

the case of the rigorous calculation model in Fig. 8 are

obtained for a groove depth of �7 nm. This depth will also

affect the diffraction efficiency in the in-plane case. As far as

the zeroth order in this grating orientation is concerned, one

can easily measure it in a �–2� scan, i.e. in a specular reflec-

tivity scan. The related spectrum, which is not presented here,

shows a periodic oscillation introduced by interference in the

coating thickness (see, for example, Born & Wolf, 1980), and

an additional weak zeroth-order diffraction peak at an angle

of grazing incidence of 1.5� (for � = 0.31 nm), which is

significantly above the theoretical critical angle of 1.12�. This

peak is predicted by the rigorous approach, which considers all

reflected and transmitted waves and their deformations due to

shadowing, for the indicated groove depth of 7 nm.

The measured data for the first-order in-plane diffraction at

a larger photon energy of 6 keV (� = 0.207 nm) are presented

in Fig. 9. The experimental error �e in this case of operation

beyond the critical angle limit according to equation (8) and

thus of rather small efficiency is constant, corresponding to

10% of the measured signal at the maximum. The simulation

confirms the small diffraction efficiency for the profile

presented in Fig. 7 and for an r.m.s. surface roughness of

1.5 nm. The angular dependence is slightly different. However,

it is found that the absolute value of the efficiency as well

as the angular dependence undergo significant changes upon

variation of any of the important parameters, i.e. groove

depth, slope in the sides of the top surfaces and the bumps, and

r.m.s. roughness. For the considered grating the most critical

parameters are the groove depth and the r.m.s. roughness. In

fact Fig. 5 has already shown that the predicted efficiency

curves undergo significant changes with variation of the

groove depth for zero roughness. Thus achieving a better

agreement was not attempted. In this case, without roughness,

the first-order efficiency is predicted to be about 0.75%, and

thus the relatively large roughness of 1.5 nm r.m.s. reduced it

threefold.

At this point it becomes interesting to see whether, and how

well, the rigorous approach can predict, for the real groove

profile, the in-plane diffraction under more favourable

conditions as far as operation away from the critical angle is

concerned. According to equations (8) and (9) these condi-

tions will be found for longer wavelengths, i.e. for smaller

photon energies. The grating was a test structure for verifying

the suitability of the laminar profile in a heat-resistant

substrate (SiC) for a soft X-ray monochromator to be oper-

ated at high heat load from an undulator synchrotron radia-

tion source, as discussed by Jark (1992). The proposed driving

scheme for the monochromator was the fixed-focus SX700

scheme introduced by Petersen (1982), in which the virtual

vertical source is kept at a fixed distance upstream of the

grating by simply running it with sin� / sin� = constant = 2.25.

The grating profile and this latter ratio will allow us to esti-

mate its efficiency. This operation will take place away from

the critical angle operation. Then at the correspondingly

operated rather small angles of grazing incidence the shadow

effect in the valleys will mean that the valleys hardly contri-

bute in the diffraction. So the structure could be looked upon

as a simple binary grating with absorbing valleys. For such a

structure the efficiency in first order in the scalar model

according to Born & Wolf (1980) would be expected to be

about 10% of the related reflectivity of the coating. Initially

the grating efficiency was tested by Jark et al. (1990) for the

projected operation range with photon energies between

100 eV and 800 eV. In fact, the reported data, as discussed by

Jark et al. (1990) and Jark (1992), show that the experimentally

observed efficiency was roughly 10% of the reflectivity of a

gold coating at the same angles of grazing incidence. When the

real profile and the surface roughness are now considered in
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Figure 9
Comparison between the measured angular dependent efficiency for the
first order of the laminar Au 1220 mm�1 grating for � = 0.207 nm and the
rigorous simulation for the real profile and an r.m.s. roughness of 1.5 nm
in in-plane diffraction.
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the simulations, then, as shown in Fig. 10, the predicted effi-

ciencies almost agree with the observed efficiencies for the

SX700 operation mode. In this case the error in the measured

efficiency �e is constant and corresponds to 3% of the

measured signal in the maximum.

Another test was run at a photon energy of 1400 eV (� =

0.89 nm) by Di Fonzo et al. (1991). In this case, according to

equation (8), the first-order diffraction takes place in the

vicinity of the critical angle operation, while the second-order

diffraction takes place beyond this critical angle limit. The

latter related diffraction is thus expected to be very inefficient.

Note that in any case the second-order diffraction from a

laminar (binary) grating should be very small (see, for

example, Hutley, 1982). Even under these very particular

conditions, as is evident from Fig. 11, the rigorous calculations

predict the angular dependence of the efficiency and its

absolute expectedly small values, which were measured by

Di Fonzo et al. (1991). In this case of measured small signals

the error �e corresponds to 5% of the measured signal in the

maximum.

5. Summary

This contribution shows that by the use of rigorous calcula-

tions taking into account the real grating profile of a diffrac-

tion grating the expected performance of the grating can now

be predicted rather reliably in the entire soft X-ray range

including the tender X-rays. This applies in the present case

for both possible grating orientations with respect to the

incident beam, i.e. when the diffraction is rather inefficient in

in-plane mounts as well as when the diffraction is found to

be rather efficient for conical diffraction mounts. A relatively

large surface roughness of the order of 1.5 nm r.m.s. was found

to have little effect in the latter case on the first-order effi-

ciency in the prediction as well as in the measured data. It is

shown that the scalar approach for the efficiency calculation

will fail for this purpose. The relatively high diffraction effi-

ciency for the present reflection grating in the conical

diffraction configuration throughout the tender X-ray range

now also allows us to consider gratings as optical devices to be

used in instruments for this spectral range. The present grating

with laminar profile turns out to provide interesting symmetric

and efficient beam-splitting properties, as predicted by Goray

(2008). In gratings with other profiles, the diffraction with high

efficiency into a single order could be favoured and such

devices could then find applications in monochromators. Jark

(2016) showed that unusual tuning ranges, e.g. 600–6 keV,

could be scanned with just a single grating. Scanning in this

range presently requires the employment of several rather

different dispersing elements. The application of the conical

diffraction configuration has already been discussed for lower-

energy soft X-rays in space astronomy and in free-electron-

laser research. In the first case it is an efficient means for

the monochromatization of weak soft X-ray signals (see, for

example, Werner, 1977; Cash, 1991; Goray & Egorov, 2016),

while in the latter case at strong sources the efficiency

becomes an argument when two diffracting elements are used,

as proposed by Poletto (2004), in order to minimize the pulse

lengthening, which is inherent in the diffraction from single

reflection gratings. In both cases the rigorous calculation

approach described here holds the capability to become a

powerful tool for the optimization of the profile in already

projected spectral ranges with smaller photon energy, but also

when larger photon energies are considered.
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