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A general expression derived from Poynting’s the-

orem reports the well-posedness of energy conser-

vation for a weak formulation of diffraction by lossy

anisotropic inhomogeneous one- and biperiodic grat-

ings. Formulas allow direct absorption calculus with

the same rigor as solutions of Maxwell’s equations,

i.e. via distributions employed to describe the field.

Absorption integrals, valid for any rigorous method,

are expressed using the near field and conductivity

tensors in the volume or on the surface restricting a

grating domain between uniform medias.

1 Introduction

Various optical grating properties including reso-
nance and non-resonance anomalies, differing in
their nature, can be effectively explored using struc-
tured high- and low- conductive layers, e.g.: Fano-
type resonances, Brewster and Bragg conditions,
Rayleigh orders, groove shape and waveguide pecu-
liarities, anisotropic and metamaterial abilities, etc.
Because of the TE and TM modes in cases for one-
periodic gratings (one-gratings) in conical diffrac-
tion (Fig. 1) or biperiodic (crossed) gratings (bi-
gratings) (Fig. 2) being coupled through the bound-
ary conditions, the associated problems are more
general, and gratings can act as perfect absorbers
and volume- or surface-field enhancers at any in-
cidence polarization state. Besides being physi-
cally meaningful, an accurate and fast computing
of the grating absorption magnitude A is especially
important for many microwave devices, in x-ray–
EUV ranges, for lithography processes, in solar cell
improvements and for other modern applications
such as plasmonics, photonic crystals and metama-
terials, where absorption plays a predominant role.
Thus, a computation of A, as well as using the reci-
procity theorem, is an important tool to check the
quality of the numerical solution for absorbing grat-
ings with the requirement that the sum of reflected,
transmitted and total absorbed energies should be
equal to the energy of the incident wave.
Another important point for analysis is that the

computation of A itself is not connected with a

specific rigorous method which is used for near-
zone field calculus. It has not only intuitive sig-
nificance but the same rigor, namely in the sense
of distributions (generalized functions) and way
to deduce as more simple energy conservations
for perfectly conducting and lossless gratings (see,
e.g., [1], Ch. 2). So, in [2] the absorption of lossy
lamellar one-periodic gratings is considered for in-
plane (classical) diffraction and TE/TM polariza-
tions using the modal method. In [3] the general
power balance for an anisotropic non-Hermitian
one-grating is evaluated for the TM polarization
(polarization wherein the electric field is in the
plane of incidence) using the rigorous coupled-wave
analysis. In [4] the energy conservation proper-
ties for a wave propagation through stacked grat-
ings comprising metallic and dielectric cylinders
are presented using a Green’s function approach
based on lattice sums to obtain the scattering ma-
trices of each layer. In [1], Ch. 12, the general-
ized energy balance in the explicit form for multi-
layer isotropic one-gratings working in classical and
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Figure 1: Schematic conical diffraction by a
multilayer one-periodic grating.
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Figure 2: Schematic diffraction by a biperiodic
grating.

conical diffraction is derived from the boundary in-
tegral equation theory using the absorption inte-
grals. In [5], the energy-balance criterion described
for nonlinear in-plane one-periodic gratings and
rough surfaces is established in the explicit form
for both polarizations and derived from Maxwell’s
equations. In [6], Ch. 7 the energy absorption for-
mulae for isotropic bi-gratings is obtained using the
coordinate transformation technique and bound-
ary integral equations. In [1], Ch. 5 the global en-
ergy balance for inhomogeneous anisotropic one-
and bi-gratings is presented using the finite-element
method and variational formulation of the diffrac-
tion problem.
The current approach is presented for the most

general case of anisotropic inhomogeneous (multi-
layer) bi-gratings. A derivation of explicit expres-
sions considered for finding the absorption quantity
as well as the interpretation of the results obtained
for all grating types bear only on Maxwell’s equa-
tions, the divergence (Gauss–Ostrogradsky) theo-
rem and boundary conditions. Besides more gen-
erality, the present formulation is based on the rig-
orous mathematical foundation developed in [7–12]
and related publications via variational (weak) for-
mulations of the bi-grating diffraction problem in-
cluding the existence, uniqueness and convergence
of the electromagnetic field solution. These re-
sults can be used to justify the workability of a
present plethora of numerical methods to solve
any kind of diffraction problems rigorously. It
worth noting that those methods were developed
mostly by specialists in physics and optics, and,

some of them, were seemingly not aware of the
rapid progress in the fields of finite element meth-
ods, boundary element methods and integral equa-
tion methods made in the mathematical commu-
nity since 1990. The weak formulation has the
great advantage that it is applicable to very gen-
eral diffraction gratings with any topology of in-
terfaces and materials: biperiodic, inhomogeneous,
anisotropic, negatively-refracted and even [13] non-
linear. In the electromagnetic literature there are
various expressions for the absorption, however
without a complete derivation and references to
mathematical results for diffraction gratings. Thus,
the energy balance generalization and computa-
tion in the explicit form (in quadratures) of A
for complex one- and bi-gratings can be consid-
ered as having both academic and practical impor-
tance.

2 Diffraction problem

2.1 Problem statement

Consider the general case of vector diffraction by
an arbitrary crossed grating with periods dx and dy
directed, in general, non-orthogonally. Let a time-
harmonic (with time dependence e−iωt) electromag-
netic linearly-polarized plane wave incident above
(+) on a bi-periodic lossy structure G bounded in
R3 and separated by two homogeneous half-spaces
G+ := {z ≥ 0} and G− := {z ≤ −h}, h ≥ 0
in Cartesian coordinates (x, y, z) = r ∈ R3 (Fig. 2).
We assume constant relative electric permittivity
ǫ± and constant relative magnetic permeability µ±

such that Re ǫ+ ∧ Reµ+ > 0, Im ǫ+ ∧ Imµ+ = 0,
Im ǫ− ∧ Imµ− ≥ 0. Otherwise, the relative permit-
tivity ǫ̂(x, y, z) and permeability µ̂(x, y, z) functions
of the grating region G are given by nonsingular
3×3 matrices with doubly periodic, complex-valued
L∞ (bounded) components. In physics, these com-
ponents are usually piecewise continuous or piece-
wise constant functions corresponding to material
refractive indices. Thus, we allow rather general
anisotropic biperiodic structures including edges,
corners, intersected boundaries, inclusions and also
metamaterials. As it is important in the treatment
of periodic problems, we restrict the consideration
to one unit-cell Ω := {r ∈ Q×R : −h ≤ z ≤ 0}, for
one biperiod Q := [0, dx) × [0, dy) and uniform re-
gions Ω± above and below Ω such that Ω+ := {r ∈
Q × R : z > 0} and Ω− := {r ∈ Q × R : z < −h}
(now Ω is a compact set).
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In the physical problem the surface is illuminated
by an electromagnetic plane wave with the incident
wave vector k+ = (α, β,−γ)T

ui = (Ei,Hi) = (p, s) ei(αx+βy−γz) . (1)

In (1) polarization vectors p, s satisfy

k+ · p = k+ · s = s · p = 0.

Due to the grating periodicity the incident wave
is scattered into a finite number of plane waves in
G+ ×R and possibly in G− ×R. |k+| = kv

√
ǫ+µ+,

ǫ+ 6= 0 ∧ ∨µ+ 6= 0, where kv = w
c , ω is a fixed pos-

itive frequency and c is the vacuum light velocity.
Note that this condition is satisfied by dielectric
media with ε+ > 0, µ+ > 0 as well as negative
index materials, satisfying ε+ < 0, µ+ < 0. The
wave vector k+ is expressed using the incidence an-
gles |θ| < π/2, |φ| < 2π and the polarization angle
|Ψ| < π:

k+ = kvν+(sin θ cosφ, sin θ sinφ,− cos θ)T

and

px = cosΨ cos θ cosφ− sinΨ sinφ,

py = cosΨ cos θ sinφ+ sinΨ cosφ,

pz = − cosΨ sin θ.

For the upper refractive index ν+ =
√
ǫ+µ+ we

determine γ > 0 if ε+ > 0, µ+ > 0, whereas γ < 0
for negative index materials.
The total electromagnetic fields u± are given by

u+ = ui + (E+,H+), in G+,

u− = (E−,H−), in G− (2)

and satisfy:

• quasiperiodicity by a multiplication operator Fα,β

acting on (α, β)-quasiperiodic function u : R3 → C

such that

Fα,βu(r) := ei(αx+βy) u(r); (3)

• the outgoing wave conditions in the sense of
Rayleigh series with coefficients c±n,m

u+ − ui =

∞
∑

n,m=−∞

c+n,m ei(α
+
nx+β+

my+γ+
n,mz), z ≥ 0,

u− =

∞
∑

n,m=−∞

c−n,m ei(α
−
n x+β−

my−γ−
n,mz), z ≤ −h, (4)

where αn = α + 2πn/dx, βm = β + 2πm/dy and
γ±2
n,m = k2±−α2

n−β2
m with γ±

n,m > 0 or −iγ±
n,m > 0;

• boundary conditions for the tangential compo-
nents of E, H, curlE and curlH

[n× u]∂Ω±
= 0,

[n× ǫ̂−1(∇×H)]∂Ω±
= 0, (5)

[n× µ̂−1(∇×E)]∂Ω±
= 0.

The square brackets in (5) denote the jump of func-
tions across ∂Ω±.
Using (4) for the field and its normal derivative

representations on ∂Ω± (5) can be transformed to
the form of nonlocal transmission conditions (see,
e.g., [9]), which satisfy

∂zu(x, y, 0) = −T+
α,βu(x, y, 0)− 2iβp,

∂zu(x, y,−h) = T−
α,βu(x, y,−h),

(6)

where

T±
α,βu(x, y) =

∞
∑

n,m=−∞

−iγ±
n,mc±n,m ei(αnx+βmy) (7)

with the Fourier coefficients

c±n,m =
1

dxdy

∫

Q

u(x, y) e−i(αnx+βmy) dxdy.

The pseudodifferential operators T±
α,β acting on

doubly periodic vector functions on R2 specify the
Dirichlet-to-Neumann map. The operators T±

α,β

map the Sobolev space Hs
p(Q) of doubly periodic

functions defined on Q boundedly into Hs−1
p (Q),

s ∈ R. The equality in (7) is valid in the sense of
distributions. The spaceHs

p(Q) denotes the closure
of smooth doubly periodic functions on R

2 with re-
spect to the norm

|c0,0|2 +
∞
∑

n=−∞
n6=0

∞
∑

m=−∞
n6=0

|(n,m)|2s|cn,m|2.

Note that Hs
p(Ω) denotes the restriction to Ω of all

doubly periodic functions in Hs
loc(R

3) and for u ∈
H1

p (Ω) the boundary values u|∂Ω±
∈ H

1/2
p (∂Ω±)

3.
In the following we need vector fields E±,H± of

locally finite energy

E±, H±, ∇×E±, ∇×H± ∈ L2
loc(Ω

3)

satisfying two couples of time-harmonic Maxwell
equations

∇×E = iωB, ∇×H = −iωD ; (8)

D = ǫv ǫ̂E, B = µvµ̂H, (9)

where ǫv and µv are vacuum constants. Thus,
equations introduced in (8) and (9) together with
(1)–(7) give us the full problem statement.
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2.2 Energy balance for diffraction gratings

The efficiency of a diffracted or transmitted prop-
agating mode (order) represents the proportion of
power radiated in each order. Defining the power
for time-harmonic electromagnetic incident fields
as the flux density of the Poynting vector mod-
ulus |Si| = Re (Ei × Hi)/2 (C means the com-
plex conjugate of C) through a normalized rect-
angle parallel to the (x, y)-plane (Fig. 2), the ratio
of the power of reflected or transmitted propagat-
ing orders and of the incident wave gives the sum of
diffraction efficiencies of reflected orders R or trans-
mitted orders T . Diffraction efficiencies for the re-
flected and transmitted orders of any grating can
easily be found from the corresponding Raleigh co-
efficients or boundary values, see, e.g., in [1]. If a
general multilayer grating (Fig. 1) has the perfectly
conducting substrate, e.g. νN = (0,∞), where νN
is a refractive index in the substrate and there
is no any energy absorption in the grating layers,
Im ν̂j = 0, where ν̂j are refractive index matrices,
j = 1, . . . , N − 1; then energy conservation under
unitary normalization for the incident wave is ex-
pressed by the standard energy criterion R = 1. If
the grating is lossless, Im ν̂j = 0, j = 0, . . . , N , then
energy conservation is expressed by a similar energy
criterion R + T = 1. In the most publications de-
voted to the theory of diffraction gratings (see, e.g.,
Refs. in [1]) one verifies energy conservation by cal-
culating the real part of a surface integral over the
lossless grating region for the normal component of
Poynting’s vector S = E×H/2:

R+ T − 1 = Re

∮

Sn ds = 0. (10)

If Im ν̂j > 0 for some j = 1, . . . , N , then there is
some energy absorption in grating layers or/and in
the substrate. Thus, the above mentioned principle
of energy conservation (the sum of efficiencies of all
reflected and transmitted orders should be equal to
the power of the incident wave) does not hold. In
a general case,

A+R+ T = 1, (11)

where A is called the absorption coefficient or sim-
ply the absorption in the given diffraction prob-
lem. In the lossy case, an independently calculated
quantity A is required to verify (11). In particular,
the values of the field on ∂Ω+ and ∂Ω− can give
valuable information on the absorbing power ([1],
Ch. 12). To find such a quantity a valid approach

should be used because some arbitrariness exists in
the definition of S as well in the calculation of the
surface integral in (10) (see, e.g., in [14]). Knowl-
edge of a directly calculated value of the absorp-
tion for a grating is a useful and self-consistent tool
not only for single-computation testing the correct-
ness and reliability of developed computer codes.
In many difficult cases convergence of A has to be
compared with convergence of the indirect absorp-
tion Ai = 1 − R − T due to numerical differences
in the concrete rigorous method to compute near-
and far-zone fields (see, e.g., in [1] and [15–17]).

3 Absorption problem

3.1 Energy balance derivation

The present formulation for the energy balance and
absorption coefficient of anisotropic inhomogeneous
bi-gratings follows the classical line on the complex
Pointing theorem applying. Suppose from [7–12]
that E, H are a solution of the partial differen-
tial formulation of the diffraction problem (1)–(9),
the expression for the energy balance and absorp-
tion can be derived from Maxwell’s equations for
curlE and curlH in a periodic cell Ω, which has
in x-direction the width dx, in y-direction the width
dy and is bounded by planes z = 0, z = h and con-
tains ∂Ω. From (8) and (9) one can derive after
some algebra the well-known relation for the time-
averaged complex field amplitudes and Poynting’s
vector

∇ReS = −(ǫvEσ̂eE+ µvHσ̂mH)/2, (12)

where σ̂e = iωǫv(ǫ̂ − ǫ̃)/2 and σ̂m = iωµv(µ̂ − µ̃)/2
are relative electric and magnetic, resp., conductiv-
ity tensors and ǫ̃ and µ̃ are hermitian conjugates to
tensors ǫ̂ and µ̂ (e.g. obtained by a matrix trans-
position and complex conjugations of matrix ele-
ments), resp. Then we integrate (12) over the vol-
ume Ω. Making the use of the Green–Ostrogradsky
theorem for the left term and integration by parts
lead to

Re

∫

∂Ω+

Sin ds+Re

∫

∂Ω+

Sn ds+ Re

∫

∂Ω−

Sn ds

+
1

2

[
∫

Ω

ǫvEσ̂eE+ µvHσ̂mHdv

]

= 0, (13)

where n refers to the exterior unit vector normal to
the surfaces ∂Ω± enclosing Ω. Taking into account
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(4), (6), (10), the equality (13) can be transformed
to

Ĩ − R̃ − T̃ =
1

2

∫

Ω

(

ǫvEσ̂eE+ µvHσ̂mH
)

dv, (14)

where Ĩ, R̃ and T̃ are unnormalized incident, re-
flected and transmitted power z-components, resp.
The first three terms in (13) are real quantities and
the fourth term should be also real. So, we come
finally to the energy balance

Ã+ R̃+ T̃ = Ĩ (15)

with the unnormalized absorption coefficient

Ã =
1

2
Im

∫

Ω

(

ǫvEσ̂eE+ µvHσ̂mH
)

dv, (16)

valid for any grating and rigorous method in use.

3.2 Weak formulation results

Maxwell equations been valid for generalized func-
tions, (16) is valid in the same sense. The general
existence, uniqueness and stability (continuity) of
a solution for Ã formally results immediately from
the strong ellipticity concept via the variational for-
mulations for E and H derived from the mentioned
above rigorous mathematical studies [7–12]. As a
result, the Poynting vector and its divergence are
continuous on ∂Ω±. Hence, the right part of (12)
is also continuous.
The basic idea of a variational approach is to es-

tablish a coercitivity for the bilinear form of the
variational formulation in the energy space and
then apply the Lax–Milgram lemma and the Fred-
holm alternative [18]. The time harmonic Maxwell
equations are transformed to an equivalent strongly
elliptic variational problem for the electric or/and
magnetic field in a bounded biperiodic cell with
nonlocal boundary conditions using, e.g, Galerkin’s
formulation (see in [1], Ch. 5). This guarantees the
existence of quasiperiodic electric (resp., magnetic)
fields solving Maxwell’s equations and justifies the
discretization of the biperiodic diffraction problem
with standard finite elements.
It was shown that the grating variational prob-

lem is solvable for all frequencies and directions of
the incident wave. The solutions for E and H are
unique except for a discrete sequence of frequen-
cies accumulating at infinity. If the structure con-
tains absorbing materials and the permittivity ten-
sors are piecewise analytic, as it is in most cases,
then the diffraction problem is uniquely solvable for
all frequencies [12].

4 Absorption coefficients

4.1 Absorption coefficients of bi-gratings

Equation (16) determines the absorption power in
a grating volume. In diffraction efficiency and ab-
sorption calculus the respective magnitude should
be normalized to the power of the incident wave.
In our case it should be the time-averaged Poynt-
ing vector z-component of the incident flux den-
sity within a rectangle surface of area dxdy parallel
to the (x, y)-plane and having the upper medium
impedance:

Ĩ =
∣

∣

∣
Re

∫

Siz dxdy
∣

∣

∣
.

Using the incident wave (1) with the electric po-
larization vector of the unitary amplitude, |p| = 1,
and boundary conditions (6) one can calculate this
integral easily in the explicit form

Ĩ = dxdy cos θ
√

ǫ+/µ+)/(2Zv). (17)

where Zv =
√

µv/ǫv is the vacuum impedance. Us-
ing (17) and (16) the general normalized absorption
coefficient A = Ã/Ĩ of a bi-grating is introduced as

A2 =

√

µ+/ǫ+
2dxdy cos θ

Im

∫

Ω

(

Eσ̂eE+Z2
vHσ̂mH

)

dv. (18)

Equation (18) represents the main result for the
absorption of any bi-grating described above and
is used in the normalized energy balance of (11)
to test numerical codes. It is valid for any rigor-
ous electromagnetic method that can derive local
values of E and H in the volume of one grating
period. Such a directly calculated absorption can
be (and should be) compared to the indirect value
of Ai to check the accuracy of results. However,
for some rigorous approaches like boundary inte-
gral equation methods, boundary element methods,
methods of fictitious sources, surface integrals are
much more preferable to calculate. For such numer-
ical methods direct calculus of A using a surface (or
contour, for one-gratings) integral for the Poynting
vector component over the closed grating region can
be used. It reads by (13) and (17) as

A2 =
Zv

√

µ+/ǫ+
2dxdy cos θ

Re

∫

∂Ω

E×Hn ds. (19)

and describes the same as in (18), i.e. the Joule
effect losses density of the absorbing grating. The



128 DAYS on DIFFRACTION 2015

advantage of (18) in compare with (19) might be
using only one of two solutionsE orH of the diffrac-
tion problem for some materials. For example, for a
grating medium with the real scalar magnetic per-
meability µ̂ = µ̃ = µ, σ̂m = 0 and (18) reads

A2 =

√

µ+/ǫ+
2dxdy cos θ

Im

∫

Ω

Eσ̂eEdv. (20)

For so called z-anisotropic kinds of materials, −ǫ̂ =
ǫ̃, and for grating regions with the real scalar µ (20)
transforms to the known formulae which is used
with the finite element and rigorous coupled-wave
methods [see, e.g., [1], Ch. 5, [19])

A2 =

√

µ+/ǫ+
dxdy cos θ

∫

Ω

Im ǫ̂|E|2dv. (21)

4.2 Absorption coefficients of one-gratings

For one-gratings very similar results for the absorp-
tion A1 can be obtained on the basis of the respec-
tive weak formulation or other mathematical proofs
(see in [18]) taking into account that the field does
not vary in one coordinate. The volume integral in
(18) should be exchanged to the surface one for a
rectangle surface ∂Ω′ of area dx ·h (Fig. 2) and with
the new normalization for the incident power

A1 =

√

µ+/ǫ+
2dx cos θ

Im

∫

∂Ω′

(

Eσ̂eE+ Z2
vHσ̂mH

)

ds.

(22)
Applying to (22) the same restrictions as to (21) we
derive for one-gratings

A1 =

√

µ+/ǫ+
dx cos θ

∫

∂Ω

Im ǫ̂|E|2ds. (23)

In [1], Ch. 12, a derivation of the energy bal-
ance and A1 for isotropic one-gratings working
in classical or conical (azimuthal angle φ 6= 0)
diffraction (Fig. 1) is based on computations of
the respective contour integrals by values of the
fields E(x, y, z) = E(x, y) eiγz and U(x, y, z) =
ZvH(x, y) eiγz, γ = ω

√
ǫ+µ+ sinφ and their normal

(∂n) and tangential (∂t) derivatives on a grating
boundary Γ:

A1 =
1

β
Im

[

κ2
+

κ2
−

(ε−
εv

∫

Γ

∂−
n EzEz +

µ−

µv

∫

Γ

∂−
n UzUz

+

√

ǫ+µ+

ǫvµv
2 sinφRe

∫

Γ

Ez∂
−
t Uz

)

]

, (24)

where κ± = ǫ±µ±−ǫ+µ+ sinφ in the upper (+) and
lower (−) mediums, ǫ± and µ± are electric permit-
tivities and magnetic permeabilities, resp., β is the
wave vector y-component, n is the outward unit
vector of the normal and arc length integration is
performed assuming d = 1 along one period Γ of
the cut of the boundary by the z = 0 plane.
For multilayer gratings A1 is similarly calculated

as the difference between the energy flux densities
that cross the upper, Γ0, and the lower, ΓN−1,
boundaries of the multilayer structure through cells
Ω±H bounded by planes x = 0, x = d, z = 0, z = 1,
y = ±H and contained Γ0 or ΓN−1:

A1 =
1

β
Im

[
∫

Γ0

( ǫ+
ǫv

∂+
n EzEz +

µ+

µv
∂+
n UzUz

)

− κ2
+

κ2
−

∫

ΓN−1

(ε−
εv

∂−
n EzEz +

µ−

µv
∂−
n UzUz

)

]

, (25)

where n0 and nN−1 are unit vectors of the normal,
which are interior to the regions under study.
From the detailed mathematical analysis of the

conical diffraction solution using boundary integral
equations the Fredholmness of operators V + and
V − has been established with such basic properties:

1. The integral equations are equivalent to the
Helmholtz system if the operators V + and V −

are invertible.

2. If the profile Γ has no corners, then the problem
is solvable if ε− + ε+ 6= 0 and µ− + µ+ 6= 0.

3. If the profile Γ has corners, then the problem is
solvable if ε−/ε+ and µ−/µ+ /∈ [−ρ,−1/ρ] for
some ρ > 1, depending on the angles at these
corners.

4. The solution of the problem is unique if Im ε−≥0
and Imµ− ≥ 0 with Im(ε− + µ−) > 0.

Conclusion

A generalization of the energy balance, presented
for lossy anisotropic inhomogeneous one- and
biperiodic gratings, is based on a diffraction prob-
lem variational formulation and does not depend on
a rigorous method chosen to solve Maxwell’s equa-
tions. This guarantees the existence, uniqueness
and solvability under computations of the respec-
tive absorption integrals. It can be done by the
derived general formulas via known near-zone field
values and conductivity tensors, either in the grat-
ing volume or on its boundary. Thus, the present
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energy balance derivation for very general absorb-
ing gratings can be considered as universal and use-
ful as well-known energy conservations for perfectly
conducting and lossless gratings. The proposed ap-
proach can be extended also to non-linear gratings
and randomly rough surfaces that is a matter of
future publications.
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