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When reflection gratings are operated at grazing incidence in the extreme off-
plane configuration and the incident beam trajectory is parallel to the grooves,
the diffraction into the first order can be more efficient than in the classical
orientation. This situation is referred to as the conical diffraction case. In the
classical configuration the grooves are perpendicular to the incident beam and
thus an efficiency-reducing shadowing effect will be observed at very grazing
angles. It was recently shown that a laminar grating could provide symmetric and
relatively high efficiencies in conical diffraction for diffraction even of photons
with large energies of the order of 4 and 6 keV. For photon energies in the
tender X-ray range, accurate computing tools for the calculation of diffraction
efficiencies from gratings with simple coatings have not been available.
Promising results for this spectral range now require the development of tools
for modelling the diffraction efficiency expected in optical instrumentation,
in which the provision of high efficiency in the indicated spectral range is
mandatory. This is the case when weak sources are to be investigated, like in
space science. In this study it will be shown that scalar calculations are not
appropriate for this purpose, while newly introduced rigorous calculations based
on the boundary integral equation method, implemented in the PCGrate®™ code,
can provide predictions that are in agreement with observed diffraction
efficiencies. The agreement is achieved by modelling the exact surface profile.
This applies for both the conical diffraction configuration and for the classical in-
plane configuration, in which a significantly lower efficiency was obtained. Even
though the profile of the presented grating was not perfect, but significantly
distorted, the calculations show that efficiency-wise the structure provided
already more than 75% of the ideally expected efficiency for conical diffraction.
This is a very promising result for further optimization of diffraction gratings for
use in the tender X-ray range.

1. Introduction

The soft X-ray range was defined by Attwood (1999) to cover
those photon energies in the X-ray range that cannot be used
for radiography experiments due to their very limited pene-
tration range; this photon energy range extends from 300 eV
to 8000 eV (or, in terms of wavelength X, from 4.1 nm to
0.15 nm; wavelength A and photon energy E are related via the
simple formula AE = 1239.852 nm ™' eV ~"). Within this region
the photon energy range 2 keV < E < 8 keV is referred to as
the tender X-ray range by Attwood (1999), as the X-rays are
monochromated like harder X-rays by the use of bulk struc-
tures, i.e periodic crystal structures (see, for example,
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Matsushita & Hashizume, 1983). Lower photon energies
instead are usually monochromated by surface relief struc-
tures, ie. by reflection gratings (see, for example, Hutley,
1982).

Reflection gratings were classically found to be the most
flexible devices for the monochromatization of visible and UV
light (see, for example, Hutley, 1982). This is due to the fact
that all important parameters, like the groove density, the
grating orientation with respect to the incident beam and
the angle of incidence, can be freely chosen. This situation
changes significantly when the application range is extended
towards soft X-rays as, according to Lukirskii ef al. (1963), one
now needs to operate the structure at grazing angles of inci-
dence below the critical angle for total reflection 6.;. When
using a diffraction grating in the classical in-plane orientation,
then the direction of the mth diffraction order for a given
wavelength A can be obtained from the grating equation,

m) = p(cos O — cos @), (1)

where p is the pitch (i.e. period or the groove spacing) of the
structures in the plane of incidence (see Fig. 1), and 6 and ¢
are the angles of grazing incidence and exit. m is positive for
diffracted orders that are found between the incident beam
and the direction of the specularly reflected beam. Then, in
order to achieve monochromatization for m # 0, the angles 6
and ¢ need to be different (see, for example, Hutley, 1982).
Depending on the grating profile, parts of the incident and
exiting beams will be subject to ‘shadowing’ effects, as
discussed by Lukirskii et al. (1963), which are illustrated in
Fig. 1. The areas shown in black are either not illuminated by
the incident beam or they cannot diffract intensity into the exit
direction. Then, either a fraction of the incident power can
no longer leave the grating structure, e.g. from grooves of
rectangular shape as shown in the lower part of Fig. 1, or a part
of the structure cannot be the source of the exiting waves, as

Figure 1

Sketch of the shadowing when diffraction gratings with sawtooth (top)
and laminar profile (bottom) are operated at grazing incidence. p refers to
the groove spacing, while 6 and ¢ are the angles of grazing incidence and
exit. The black areas are not illuminated or are not contributing intensity
to the exiting beam, while the grey areas will diffract properly.

will be observed in the case of sawtooth (triangular) profiles
(upper part of Fig. 1). Both effects will lead to discontinuities
in the wavefront shape of the diffracted beam. Intuitively one
would assume that the sawtooth profile (top of Fig. 1) could
direct all incident power into only a single diffraction peak,
which would be in the direction corresponding to specular
reflection at the inclined groove surface. However, the reci-
procity theorem requires that the efficiency of the diffraction
is the same for a given deflection angle (6 + ¢) also in the
reversed trajectory (Maystre & Petit, 1976). The loss of
photons in the shadow areas painted black is thus responsible
for the reduction of the first-order efficiency. It was shown
using rigorous calculations by Maystre & Petit (1976) and
confirmed in experiments by Maystre et al. (1980) that the
related diffraction efficiency for a given deflection angle can
be predicted simply as the reflectivity of the grating coating
material multiplied by the ratio of the unobstructed areas and
the total area, as proposed by Lukirskii et al. (1963). For a
sawtooth groove profile the latter ratio is the minimum of the
ratios sinf/sin¢ and sin¢/sinf as derived by Maystre & Petit
(1976). For a given grating structure this ratio decreases with
increasing photon energy, and for tender X-rays can be of the
order of just a few percent or even smaller. This results in very
small efficiencies for in-plane diffraction into a given order
even though the reflectivity will be high. For this reason, in the
few reported cases for gratings with simple coatings (e.g.
Petersen, 1986), the transmission through grating mono-
chromators was found to fall off rapidly in the tender X-ray
range to an unusable level of mostly scattered light.

Greig & Ferguson (1950) were the first to point out that
the shadowing can be avoided in sawtooth gratings when the
incident beam trajectory is parallel to the grating grooves. This
applies also to laminar grating profiles. In this orientation the
intensity is diffracted off-plane, i.e. out of the plane of inci-
dence, into a cone, the centre axis of which coincides with the
intersection line between the plane of incidence and the
grating surface. This advantageous situation is described
either as the extreme off-plane configuration or as the conical
diffraction scheme, in which the incident beam observes
a periodic system of small parallel micro-mirrors. Relatively
large efficiencies in this configuration have already been
observed for softer X-rays with photon energies from about
300 eV up to 1500 eV by Werner (1977) and Cash & Kohnert
(1982). This permits the use of such objects in space science
instrumentation, which needs very efficient mono-
chromatization schemes as the sources are very weak. The use
of higher photon energies was not reported until very recently
when efficient conical diffraction was observed by Jark &
Eichert (2015, 2016) also for tender X-rays with photon
energies >4 keV. At this point then the need exists to be able
to predict the grating performance reliably in the previously
unexplored tender X-ray range, where very small angles of
grazing incidence will have to be used according to Lukirskii et
al. (1963). For meaningful predictions the simulation of a real
grating profile, which may be distorted compared with the
ideal one, has to be possible. A solution to this theoretical
problem will be discussed here; then it is investigated whether
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for efficient diffraction the grating parameters can still be
chosen freely.

This report now deals only with the efficient use of reflec-
tion gratings with simple coatings in the tender X-ray range.
Thus it needs to be mentioned that, recently, promising
developments were made for enhancing the previously
observed low diffraction efficiencies of simple reflection
gratings for photon energies above 2000 eV by the addition of
appropriate multilayer coatings, for example by McNulty et al.
(1997), Ishino et al. (2006), Choueikani et al. (2014) and Senf
et al. (2016). In this case the shadowing effect in the classical
orientation is overcome by the ‘transparency’ of the multilayer
coating. The related high diffraction efficiencies also for fine-
pitch gratings (Voronov et al, 2015, 2016) can be reliably
calculated theoretically (Gorai, 2005; Goray & Egorov, 2016).
It goes beyond the scope of the present study to discuss more
details of this approach.

2. Prediction of grating diffraction efficiency
2.1. Limitation due to the critical angle operation

We will consider the two extreme geometrical orientations
of the grating with respect to the incident beam, i.e. the case of
classical in-plane operation and the case of conical diffraction.
The angular positions of the diffraction orders for the first case
are given by equation (1). In combination with grazing inci-
dence both angles 6 and ¢ will be small and the cosine function
in equation (1) can be developed into a series expansion, so
that (1) can be written in the form

S =9 = 0+ B0 ) @
The validity of the reciprocity theorem and the requirement to
operate any optical component efficiently with grazing angles
below 6., will now establish limiting values for the sum and
the difference of the angles on the right-hand side of (2). This
limit will here be referred to as the ‘critical angle operation’.
In an asymmetric profile, like a triangular or sawtooth profile,
the angle of grazing incidence with respect to the inclined
groove surface must stay below the critical angle for total
reflection; this is also required for the case of the exiting beam.
Consequently, the requirement for efficient diffraction is that
the deflection angle (6 + ¢) into a given order needs to be
smaller than 26.;. For a laminar profile the reciprocity
theorem requests that both the angle of grazing incidence 6
and the diffraction angle ¢ are smaller than the critical angle.
For monochromatization they need to be different. Then for a
laminar grating both terms on the right-hand side of (2) can at
most be identical with the critical angle 6. For a sawtooth
profile the sum term can be twice as large.

Away from absorption edges of a material with the refrac-
tive index 7 the critical angle is defined by

O = [201 —m)]"*, 3)

when only the real part of the refractive index is considered.
In this condition in the soft X-ray range the refractive index

decrement (1 — n) is a positive number which, according to
James (1967), is given by
Ny , Z

1— = —= 1A p—, 4

(A=n = 2nip? @)
where N, is Avogadro’s number, r, is the classical electron
radius, p is the material density, A is the photon wavelength,
and Z and A are the atomic number and the atomic mass of
the material, respectively. Then, from (3) and (4), one finds
that the critical angle varies linearly with the photon wave-

length with
Ocril = a)‘" (5)

where a = 64 mrad nm ™" for the commonly used gold coating
[for Pt it is ~0.072 nm ™" (see Henke ef al. (1993)]. For the
desirable use of the grating away from the critical angle
operation we then obtain from equation (2) a limit for the
period for a laminar profile of

2
pmin,lam > ﬁ |m|7 (6)

while for a sawtooth profile it is

1
pmin,saw > ﬁ |m| (7)

With 1/a® = 244 nm? for Au we have
|m|

Pmin,lam > (488 nm2) 7 (8)
and
Im|
Pminsaw = (244 an) T (9)

Now on the one hand, in order to minimize the obtainable
spectral resolution, one has to strive for small groove spacing;
and, technically, periods as small as ~280 nm (groove density
~ 3600 mm™ ') are now feasible with good shape fidelity. On
the other hand, for efficient diffraction of high-energy tender
X-rays with E = 8 keV (A = 0.15 nm), equations (8) and (9)
require gratings with puiniam > 3250 nm (groove density <
300mm™") and puinsaw > 1625nm (groove density <
600 mm ™). It is thus the combination of the critical angle
operation and of the shadowing effect in higher groove density
gratings which leads to the rapidly decaying monochromator
transmission, when the photon energy of 2 keV is approached
(e.g. Petersen, 1986). This latter photon energy coincides
with the critical angle limit for a grating with p = 820 nm
(1220 mm "), which will be discussed here. Conequently the
operation range of similar high-groove-density gratings cannot
be extended any further into the tender X-ray range.
However, the situation changes completely when the grating is
operated in conical diffraction. Then the direction of the mth
diffraction order of a given wavelength A can be obtained from
the general grating equation, when expressed for conical
diffraction, in the form given by Werner (1977),

—m./siny = p(sina — sin B), (10)
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Figure 2

Schematic of conical diffraction. The angles « and B are the polar angles
of incidence onto the surface and of diffraction, and y is the azimuthal
grazing incidence angle.

where o and f are the polar angles of incidence onto the
surface and of diffraction, respectively, and y is the azimuthal
grazing incidence angle (the grazing angle of a rotation of the
dispersive plane; see Fig. 2).

Assuming the incidence polar angle o to be zero (for
symmetrical profiles) or to be small (for blaze profiles) and
sinf =~ 1 for fine-pitch gratings working in conical grazing-
incidence diffraction for the first orders, one can derive

mh ~p. (11)
v
Using (3) for the expression of y near the critical angle one
obtains finally

i
Pmin > 7 . (12)

Contrary to schemes of classical diffraction, equation (12) is
valid for any groove profile and does not depend on the
wavelength. In fact, for first-order diffraction by use of gold-
coated gratings, equation (12) puts a limit on the very small
number p,;, > 15.6 nm, which is achieved in all practical cases.
It is worth noting that these rather rough evaluations for
minimal periods are just the scalar theory conclusions and
they must be verified against rigorous electromagnetic theory
evaluations.

2.2. Scalar efficiency behaviour

An important feature in X-ray gratings is the small A/p and
h/p ratios, where A is the groove depth. The grating operates in
the scalar regime if A/p < 0.2 at A/p < 0.1 and the angles of
incidence and diffraction are close to the surface normal. This
is the situation discussed in text books (e.g. Born & Wolf,
1980). The scalar regime is characterized by the absence of
polarization effects and anomalies, and the efficiency of
perfectly reflecting (conducting) gratings can be determined

from the universal curves plotted for various groove profile
types by Maystre & Petit (1976). These curves are unique
functions of the ratio A/p only and valid for gratings with
various periods, depths and coating materials. Then in classical
in-plane diffraction the absolute efficiency increases when
the period increases. However, the observed variation of the
efficiency with variation of the groove density is different from
the expectations, as extrapolated from scalar theory, which
postulates that the product of resolution with luminosity is
constant. The efficiency 7 limits derived from the scalar
diffraction theory for perfectly conductive gratings according
to Born & Wolf (1980) are the following,

n = 40.4%
n = 100%

for laminar,

(13)
for sawtooth.
The fundamental limitation in the use of the scalar approach
for the calculation of the efficiency of bulk and multilayer
gratings is given by the requirement that the incidence angle
not be very grazing. According to Vidal et al. (1985) the angle
of incidence with respect to the surface normal should not
exceed 40° for bulk gratings and 45° for multilayer ones.
Under grazing incidence at A/p < 0.1...0.05 the scalar
approximation and even the rigorous perfectly conducting
theory are generally unacceptable, especially for shorter
periods, for the transverse magnetic (TM) polarization and
for high orders. Gorai (2005) has already demonstrated by
different rigorous calculations based on the differential,
boundary integral equation, modal and Fourier-modal
(coupled-wave) methods that the absolute efficiency of bulk
and multilayer X-ray gratings changes unpredictably when
compared with predictions based on the scalar theory even at
very low A/p, as the period, groove profile, incidence angle,
wavelength and coating material vary. Only the optimum
depths of standard groove profiles, which correspond to a
blaze wavelength, can be predicted with an accuracy of a few
dozens of percent as shown by Neviere & Flamand (1980). For
classical diffraction,

|71|Apjaze = 4hcos(D/2),
|| A = 2hcos(D/2),

for laminar,
(14)

blaze for sawtooth,

where D is the deviation angle between the incident and the
diffracted beams. Now for grazing-incidence conical diffrac-
tion D/2 is not close to 7/2 but can be rather small, like in near-
normal-incidence classical diffraction. The conical type of
diffraction is characterized by high luminosity when the angle
of grazing incidence along the grooves is smaller than or equal
to the critical angle. So, equations (14) are valid if we change
D/2 to the incidence angle near the critical angle of the total
external reflection. Then, equation (14) can be reformulated
for conical diffraction mounts according to Vincent et al.
(1979) as

|| Ay = 4R siny, for laminar,

b (15)

= 2hsin y, for sawtooth.

blaze

It is worth noting that equation (15), contrary to equation
(14), does not include polar incidence and diffraction angles
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and depends only on the grazing-incidence azimuthal angle y.
Consequently the optimal groove depth does not depend on
the period of a grating working in conical diffraction. Conse-
quently when the reflectance of a grating coating material is
close to 100% the absolute diffraction efficiency of a grating
with properly matched groove depth may be close to the
theoretical scalar limit (13) for the chosen groove profile. But
again, as is the case for equations (6), (7) and (12), the suit-
ability of equations (14) and (15) for the prediction of the
exact positions and values of local and global maxima should
be checked by rigorous efficiency calculus.

2.3. Exact electromagnetic theory for very small
wavelength-to-period ratios

The theory covered here is necessarily brief because its
main parts including peculiarities of diffraction problems at
small ratios of A/p and a more general treatment of the energy
conservation law applicable to multilayer absorption gratings
have been described at considerable length by Goray &
Schmidt (2014). The electromagnetic formulation of diffrac-
tion by gratings, which are modelled as infinite periodic
structures, can be reduced to a system of Helmholtz equations
for the z-components of the electric and magnetic fields in R?,
a finite-dimensional real vector space of dimension two, where
the solutions have to be quasiperiodic in the x-direction,
subject to radiation conditions in the y-direction, and satisfy
certain discontinuity conditions at the interfaces between
different materials of the diffraction grating. The actual
number of identical or different borders and layers can be
large enough, up to a few thousand, for hard X-ray applica-
tions. In the case of classical diffraction, when the incident
wavevector is orthogonal to the z-direction, the system splits
into independent problems for the two basic polarizations as
depicted in Fig. 3, whereas in the case of conical diffraction the
boundary values of the z-components, as well as their normal
and tangential derivatives at the interfaces, are coupled. For
gratings in grazing-incidence conical diffraction we refer to
linearly polarized incident light whose electric field vector lies
in the plane of incidence as the transverse electric (TE)
polarization (or p-polarization). Then we define the TM
polarization (s-polarization) when the electric field vector lies
almost parallel to the plane of the grating. A grating diffracts
the incoming plane wave into a finite number of outgoing
plane waves considering reflected as well as transmitted
modes, ie. orders. The program PCGrate™ (http://www.
pcgrate.com/) computes efficiencies of these orders for an
arbitrary number of layers with any boundary profile type.

It is well known that the solutions of the two-dimensional
Helmholtz equation with any rigorous numerical code meet
with difficulties at small A/p. While the standard boundary
integral equation methods are robust, reliable and efficient,
they exhibit poor convergence and loss of accuracy in the
long-period range due to numerical contamination in quad-
rature. Increasing matrix size and enhancing computation
precision, as well as applying convergence speed-up techni-
ques, which are successfully explored in short- and mid-period

ranges, lead to unreasonably stringent requirements for
computing times and storage capacities at long periods and
large quantities of layers. In practice, the convergence and
accuracy of efficiency computation significantly depend on a
proper choice of trial functions, discretization schemes and
respective quadrature rules. Usually, one of the collocation
methods (method of moments) is used with the distribution of
points on a uniform grid. In spite of many research efforts and
the increasing power of modern computers, computation of
the kernel functions remains a time- and accuracy-critical part
of boundary integral equations and other methods for periodic
structures, and especially for A/p <« 1. In order to accelerate
the convergence of the series representing kernels of the
respective operators, different acceleration techniques are
applied. While at least one discretization point per wavelength
is required to reach efficiency convergence for the usual
boundary integral equation methods in X-rays (~20 is
required in the visible range), the modified integral method
(MIM) works reliably and fast despite a very small number
N of discretization (collocation) points (the main accuracy
parameter) per wavelength used in the approach in the X-ray—
EUYV range. For example, if a period includes N = 1000 and
Mp =1 x 1077 then only 1 x 10~* points per wavelength is
required for the MIM. In the code PCGrates, which is based
on the MIM, the earlier discovered peculiarity is used in the
case of gratings and rough mirrors (e.g. Goray & Lubov, 2015)
working at very small A/p: Introducing known speed-up terms
in integral methods produces an adverse numerical effect
because of the ensuing uncontrolled growth of coefficients in
analytically improved asymptotic estimations (Goray & Sadov,
2002). In that case, however, the profile depth, the bi-layer
thickness (for multilayer gratings) and the radiation wave-

4 5 P Y

-7

Incident
radiation

Figure 3

General schematic of diffraction from a periodic structure for a wavefield
with two orthogonal field components for an arbitrary angle of incidence
and polarization. The TE component of the incident wavefield is
considered to be in the plane of incidence, while the TM component is
orthogonal to it. The polarization angle § refers to the inclination angle of
the polarization vector with respect to the TE plane for the incident
beam. The polar orientation angle ¢ is connected to the azimuthal grazing
incidence angle y via ¢ = /2 — y. For the case of conical diffraction y is
used in equation (10) and defined in Fig. 2.
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length should be of the same order of magnitude. This is also
true for echelles working at any wavelength at high orders.

The MIM transforms the problem of the system of Helm-
holtz equations into a system of integral operator equations
over profile curves. We combine in PCGrate™ the so-called
direct (using the second Green formula) and indirect (using
single and double layer potentials) approaches. The solvers
only deal with boundary values of the fields and their normal
and tangential derivatives. The value of the field in the layers
can be found using the boundary data and Green formula.
Then, a down—up recursive procedure can be applied using
recurrence formulas for initial values of the fields and their
derivatives. Thus, both far-zone (amplitudes, phases, effi-
ciencies) and near-zone (absorption, electromagnetic fields
and their derivatives) data can be calculated for various
groove profiles (including multi-polygonal) and layer
(conformal or non-conformal) types, as well as for different
substrates and wavefront shapes. In order to account for
rigorous random surfaces in the X-ray range we use an infinite
beam (plane wave) and assume that the random rough surface
length repeats itself for a given large-period grating having
a number of random asperities. This classical model implies
using infinite grating samples together with intensive Monte
Carlo computations (Goray & Lubov, 2015; Goray & Schmidt,
2014).

3. Rigorous efficiency results for perfect laminar
gratings

As an example of absolute efficiency predictions using the
rigorous method described above we have calculated perfect
laminar gratings to check some conclusions derived in §2.2
by using the phenomenological approach. At the here chosen
grazing angles of incidence, the results for the TE and for the
TM modes are identical. Fig. 4 shows the absolute TE effi-
ciency in the first order of a lamellar Au grating optimized for
A = 0.154 nm versus incidence angle in the in-plane mount for

0.12F T T T T H

0.10|

0.08 |-

—o— 300/mm h=4.8 nm
0.06 == 1000/mm h=4.0 nm

@ | =& 5000/mm h=2.0 nm H
0.04 -
0.02F -
0.00 & 1 ] ] Y H

0.2 0.3 0.4 0.5 0.6 0.7
0 [°]
Figure 4

Rigorously calculated efficiency of in-plane laminar Au gratings
optimized for A = 0.154 nm versus incidence angle for various groove
densities and rigorously optimized depths.

different frequencies: 300 mm~", 1000 mm ' and 5000 mm .
According to equation (6) only the first grating could still be
used in conditions away from the critical angle operation and
thus one expects to find diffraction efficiencies of the order of
10%. The other two gratings with higher groove density will
present significantly lower efficiencies. The depths of the
grooves have been chosen initially using equation (14) and
were then optimized by rigorous efficiency calculus in order
to check the suitability of the scalar approach (Born & Wolf,
1980) for the optimization of this parameter. The top-width-
to-bottom-width ratio of the lamellar groove profile for all
gratings is the same and equal to 4:5. This ratio is applied in all
calculations, and the results are only a little different from
those for the ratio 1:1. As one can see in Fig. 4, the maximum
efficiencies are threefold larger for the 300 mm ™" grating in
comparison with the 1000 mm ™" grating, as predicted by the
scalar theory. The rigorously obtained optimal depth & =~
4.8 nm for the grazing incidence angle 6 = 0.45° differs from
the scalar value predicted by equation (14) for the 300 mm ™"
grating by 20%. The same discrepancy in the depth prediction
exists for the 5000 mm ' grating. For the 1000 mm ' grating
this discrepancy is even larger with ~30%. For the 5000 mm '
grating the maximum efficiency is then ninefold smaller in
comparison with the maximum efficiency of the 1000 mm ™’
grating. This is about twofold worse than the scalar theory
predicts. As is predicted by equation (14) for frequencies
higher than 300 mm ™', the shorter periods provide smaller
absolute efficiencies.

The angular dependence of the efficiency of the Au
1220 mm ™" perfect laminar grating for various groove depths
is shown in Fig. 5 for the TE polarization of the incident
radiation at A = 0.207 nm. The calculated efficiency is rather
low in accordance with the expectation from equation (8) for
the present grating, which at wavelengths shorter than 0.6 nm
sees the grating to be used beyond the critical angle regime.
The exact optimal depth of # = 4.4 nm at the grazing incidence
angle of ~0.6° differs for this grating from the scalar value of

0.04F T T T T H
depth h=
e~ 3nm

0.03F |—=5nm -

—e~ 7nm
—o- 9nm

o 0.02f

0.01f

0.00I- 1 1 1 1
0.2 0.4 0.6 0.8 1.0

6 [°]

Figure 5

Rigorously calculated efficiency of in-plane laminar Au 1220 mm™
gratings calculated for A = 0.207 nm versus incidence angle and for
various groove depths.
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0.35F T T T =
0.30[ T 1000 mm|
. x 5000 /mm
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Rigorously calculated efficiency for conical diffraction from laminar Au
gratings with a depth of 5 nm optimized for A = 0.154 nm versus azimuthal
incidence for the same groove densities presented in Fig. 4. The critical
angle for the Au coating is at 0.56°.

~2.9 nm predicted by equation (14) by more than 30%. The
maximal absolute efficiency of more than 3% can be reached
in the in-plane orientation for a perfect lamellar groove profile
with a top width of 370 nm. As one can see from Fig. 5, the
angular-dependent efficiency curves may have two maxima,
in accordance with the influence of the optimal depth and
reflectance of a grating material under grazing incidence. The
scalar approach cannot predict these two maxima.

For conical diffraction mounts, as one can see in Fig. 6, the
efficiency maxima and the curve shapes are almost the same
for differently dense Au gratings having the same depth, as
is predicted by equations (12) and (15). For this conical
diffraction efficiency calculus we have used @ = 0°, & = 5 nm
and a symmetrical lamellar profile with a top-width-to-
bottom-width ratio of 1:1. The maximum absolute efficiency
in this condition is three times higher than the maximum
efficiency of the 300 mm ™" grating in the in-plane configura-
tion as presented in Fig. 5. For smaller grazing incidence
angles and higher groove depths the maximum efficiencies in
conical diffraction may be even larger and would thus be close
to the absolute theoretical limit given in equation (13).

4. Discussion of experimental data

The experimental data for the diffraction efficiency in conical
diffraction was compared with a simple prediction by scalar
theory in the original publications by Jark & Eichert (2015,
2016). This allowed one to conclude qualitatively that the
measured efficiency was relatively high and that it was
maximum for the first order approximately at the expected
angle of grazing incidence. However, the agreement was not
completely satisfying and a successive closer inspection of the
grating profile with atomic force microscopy (AFM) gave
arguments for this. Indeed the grating profile was found to be
distorted compared with the projected profile. In addition,
further analysis was made also for the classical orientation. In
this case, according to equation (8), the diffraction took place

with angles of grazing incidence or diffraction, which are
always steeper than the critical angle. This will give rise to
significantly transmitted intensity through the coating, which
might be partly back-reflected in the valleys. Neither this latter
condition nor the profile distortion can be accommodated in a
scalar calculation approach. Consequently, in order to make
meaningful predictions, the original and the new data were
compared with the prediction by use of the required rigorous
calculations, which take into account all reflected and trans-
mitted intensities.

4.1. Parameters of the test grating

A comparison between the experimental results and the
model expectations is made for the previously reported
parameters. The grating was produced in 1990 and has been
discussed by Jark (1992). It was projected with a laminar
profile with tops of width >~ 370 nm, valleys of width >~ 450 nm
and depth & >~ 7 nm. The profile was etched into a polished
silicon carbide (SiC) substrate measuring 50 mm x 50 mm X
10 mm on which it covered symmetrically a width of 32 mm
and a length of 50 mm. This profile, including also the
unetched borders, was then coated with an Au layer of
thickness 23 nm. Then in the unetched border sections the
roughness statistics for the original substrate should have been
replicated in the coating surface. The final real surface profile
was measured systematically very recently by AFM. The
profile, presented in Fig. 7 for two periods, is a smoothed
average over many scan fragments. This profile is the basis
for the calculations. The etched profile was found to not be
perfectly laminar; instead an additional bump was found in the
centre of any profile top. This bump sticks out of an otherwise
not flat but concave top. The AFM scans, set for sampling
spatial frequencies between 0.5 pm ™' and 50 pum ', also indi-
cate the presence of a significant amount of scratches with
widths ranging from 25 nm to about 100 nm. These scratches
are present in the unetched border sections and also in the
etched structure in the valleys as well as in the tops of the
profile. Evidently the etching process did not lead to any
smoothing of the scratches. Including the scratches, a rela-
tively large surface roughness with values of the order of
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Smoothed averaged profile as used for the simulations, which is obtained
from many scans by use of an AFM on the 820 nm-periodic Au groove
grating.
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1.5 nm r.m.s. is derived in the flat regions. The slope at the
sides of the tops of the profiles and of the central bumps, as
presented in Fig. 6, is very similar in both positions, ~80 mrad
(or 4.5°). This slope is real and is not an artefact introduced by
the shape of the AFM tip.

Since its production several sets of efficiency data have been
recorded using the grating at different times, with different
groove orientation and in different spectral ranges. According
to the criterium for the critical angle operation given in
equation (8), this grating can only be used efficiently for in-
plane diffraction in the lower-energy soft X-ray range, E <
2 keV, and the diffraction will be rather inefficient at higher
photon energies. Alternatively, according to equation (12), in
conical diffraction the grating should provide high efficiencies
throughout the entire soft X-ray range and even at higher
photon energies. The experimental data in the tender X-ray
range were then taken in both orientations at higher photon
energies, mostly at 4 keV (A = 0.307 nm) and at 6 keV (A =
0.21 nm). The entire available data set with significantly
different characteristics now presents a very challenging
problem to any software for the calculation of grating effi-
ciencies. The principal question is thus whether these data
can be predicted with reasonable sample properties for the
random surface roughness and accounting for the real groove
profile. For the data interpretation it needs to be recognized
that the presented data and the AFM scan were obtained at
arbitrarily choosen positions. Within the sampling area chosen
for the AFM scan of 5 pm x 5 pm the groove depth variation
is found to be as large as 1 nm. A similar variation can also be
assumed between the different probed areas. So, in principle,
for each data set an optimum varying groove depth as well as a
groove profile shape could be derived. However, this will not
be done here. Instead a single data set is discussed and aver-
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aged. Considering the significant variation of the calculated
efficiencies with varying groove depth, as shown in Fig. 5, the
confidence interval for the calculated efficiency data corre-
sponds for each point to about 20% of the maximum calcu-
lated efficiency in each plot. Then the confidence interval is
at least two times larger than the presented error bars for the
experimental data, which are discussed in the following.

4.2. Efficiency calculus for the real grating and comparison
with measurements

The most interesting result found in the previous experi-
ment by Jark & FEichert (2015) for the conical diffraction
configuration was the relatively high first-order efficiency of
~20% each in two symmetrically oriented diffraction peaks
for a photon energy of 4 keV. The experimental data up to the
third-order diffraction are presented in Fig. 8, where they are
compared with the expectations from the rigorous approach
taking into account the real grating profile with a valley depth
of ~7 nm, the bump as shown in Fig. 7 and an r.m.s. surface
roughness of 1.5 nm r.m.s. The experimental data for the
conical diffraction are derived from images taken with a CCD
camera mounted behind a transfer lens and a fluorescence
screen. The limited sensitivity of the system resulted in an
absolute error of Ae = 0.01 for the efficiency in all orders. The
theoretical critical angle for the Au coating is 1.12°.

The calculated angular dependence of the efficiency as well
as the absolute values vary rather significantly with the
modulation depth next to the central bump on the top surface
of the profile. This variation is especially pronounced in the
calculations for the zeroth and the third order. In light of this,
and considering the related confidence intervals, the overall
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Comparison of the measured grating efficiencies for a photon energy of 4 keV (A = 0.307 nm) for different orders (zeroth to third) in the conical
diffraction scheme as measured by Jark & Eichert (2015) with the calculations using the rigorous approach accounting for the real grating profile (solid

line). The prediction by the scalar theory is shown by the dashed line.
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agreement of the calculations with the experimental data even
for higher diffraction orders is rather satisfying.

Practically speaking it is very promising that the efficiency
for the technically more relevant first order can be predicted
with rather small error. This applies when one considers the
real and not ideal groove profile. Even though the surface
roughness is rather high at 1.5 nm r.m.s., this parameter does
not affect the first-order efficiency very much. In fact, the
expected efficiency for zero roughness is only slightly larger
at about 23%.

At this point we ask whether the simple scalar approach can
be used for making some predictions? Thus in Fig. 8 we also
present as dashed lines the predictions with the scalar theory,
in this case for an ideal laminar profile with a top-width-
to-bottom-width ratio of 0.45:0.55. On the one hand, the
predictions using the rigorous approach show relatively little
variation for the first-order efficiency with variation of the
bump in the real profile. On the other hand, the prediction
with the simple scalar model for this more relevant order is
significantly different compared with the rigorous calculations.
Consequently the scalar approach provides rather unreliable
predictions, which is even more the case for higher orders and
especially towards steeper angles of incidence. As far as the
angular dependences are concerned, the scalar approach only
succeeds in indicating the position for minimum efficiency into
the zeroth diffraction order, while it cannot predict any other
extreme performance (minimum/maximum).

The angular dependences of the diffraction efficiencies in
the case of the rigorous calculation model in Fig. 8 are
obtained for a groove depth of ~7 nm. This depth will also
affect the diffraction efficiency in the in-plane case. As far as
the zeroth order in this grating orientation is concerned, one
can easily measure it in a 6-26 scan, i.e. in a specular reflec-
tivity scan. The related spectrum, which is not presented here,
shows a periodic oscillation introduced by interference in the
coating thickness (see, for example, Born & Wolf, 1980), and
an additional weak zeroth-order diffraction peak at an angle
of grazing incidence of 1.5° (for A = 0.31 nm), which is
significantly above the theoretical critical angle of 1.12°. This
peak is predicted by the rigorous approach, which considers all
reflected and transmitted waves and their deformations due to
shadowing, for the indicated groove depth of 7 nm.

The measured data for the first-order in-plane diffraction at
a larger photon energy of 6 keV (A = 0.207 nm) are presented
in Fig. 9. The experimental error Ae in this case of operation
beyond the critical angle limit according to equation (8) and
thus of rather small efficiency is constant, corresponding to
10% of the measured signal at the maximum. The simulation
confirms the small diffraction efficiency for the profile
presented in Fig. 7 and for an r.m.s. surface roughness of
1.5 nm. The angular dependence is slightly different. However,
it is found that the absolute value of the efficiency as well
as the angular dependence undergo significant changes upon
variation of any of the important parameters, i.e. groove
depth, slope in the sides of the top surfaces and the bumps, and
r.m.s. roughness. For the considered grating the most critical
parameters are the groove depth and the r.m.s. roughness. In
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Comparison between the measured angular dependent efficiency for the
first order of the laminar Au 1220 mm ™' grating for A = 0.207 nm and the

rigorous simulation for the real profile and an r.m.s. roughness of 1.5 nm
in in-plane diffraction.

fact Fig. 5 has already shown that the predicted efficiency
curves undergo significant changes with variation of the
groove depth for zero roughness. Thus achieving a better
agreement was not attempted. In this case, without roughness,
the first-order efficiency is predicted to be about 0.75%, and
thus the relatively large roughness of 1.5 nm r.m.s. reduced it
threefold.

At this point it becomes interesting to see whether, and how
well, the rigorous approach can predict, for the real groove
profile, the in-plane diffraction under more favourable
conditions as far as operation away from the critical angle is
concerned. According to equations (8) and (9) these condi-
tions will be found for longer wavelengths, i.e. for smaller
photon energies. The grating was a test structure for verifying
the suitability of the laminar profile in a heat-resistant
substrate (SiC) for a soft X-ray monochromator to be oper-
ated at high heat load from an undulator synchrotron radia-
tion source, as discussed by Jark (1992). The proposed driving
scheme for the monochromator was the fixed-focus SX700
scheme introduced by Petersen (1982), in which the virtual
vertical source is kept at a fixed distance upstream of the
grating by simply running it with sin¢/sin6 = constant = 2.25.
The grating profile and this latter ratio will allow us to esti-
mate its efficiency. This operation will take place away from
the critical angle operation. Then at the correspondingly
operated rather small angles of grazing incidence the shadow
effect in the valleys will mean that the valleys hardly contri-
bute in the diffraction. So the structure could be looked upon
as a simple binary grating with absorbing valleys. For such a
structure the efficiency in first order in the scalar model
according to Born & Wolf (1980) would be expected to be
about 10% of the related reflectivity of the coating. Initially
the grating efficiency was tested by Jark et al. (1990) for the
projected operation range with photon energies between
100 eV and 800 eV. In fact, the reported data, as discussed by
Jark et al. (1990) and Jark (1992), show that the experimentally
observed efficiency was roughly 10% of the reflectivity of a
gold coating at the same angles of grazing incidence. When the
real profile and the surface roughness are now considered in
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Comparison between experimentally measured first-order efficiencies by
Jark (1992) and those calculated rigorously with the real groove profile
of the 1220 mm™" laminar grating versus photon energy in in-plane
diffraction. The grating was operated in the fixed-focus condition, with
constant ratio sin¢/sinf = 2.25.

the simulations, then, as shown in Fig. 10, the predicted effi-
ciencies almost agree with the observed efficiencies for the
SX700 operation mode. In this case the error in the measured
efficiency Ae is constant and corresponds to 3% of the
measured signal in the maximum.

Another test was run at a photon energy of 1400 eV (A =
0.89 nm) by Di Fonzo et al. (1991). In this case, according to
equation (8), the first-order diffraction takes place in the
vicinity of the critical angle operation, while the second-order
diffraction takes place beyond this critical angle limit. The
latter related diffraction is thus expected to be very inefficient.
Note that in any case the second-order diffraction from a
laminar (binary) grating should be very small (see, for
example, Hutley, 1982). Even under these very particular
conditions, as is evident from Fig. 11, the rigorous calculations
predict the angular dependence of the efficiency and its
absolute expectedly small values, which were measured by
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Comparison between the experimentally measured 1220 mm ™" laminar
grating efficiencies for the second order versus angle of grazing incidence
in in-plane diffraction for a photon energy of 1400 eV by Di Fonzo et al.
(1991) and those calculated rigorously with the real groove profile.

Di Fonzo et al. (1991). In this case of measured small signals
the error Ae corresponds to 5% of the measured signal in the
maximum.

5. Summary

This contribution shows that by the use of rigorous calcula-
tions taking into account the real grating profile of a diffrac-
tion grating the expected performance of the grating can now
be predicted rather reliably in the entire soft X-ray range
including the tender X-rays. This applies in the present case
for both possible grating orientations with respect to the
incident beam, i.e. when the diffraction is rather inefficient in
in-plane mounts as well as when the diffraction is found to
be rather efficient for conical diffraction mounts. A relatively
large surface roughness of the order of 1.5 nm r.m.s. was found
to have little effect in the latter case on the first-order effi-
ciency in the prediction as well as in the measured data. It is
shown that the scalar approach for the efficiency calculation
will fail for this purpose. The relatively high diffraction effi-
ciency for the present reflection grating in the conical
diffraction configuration throughout the tender X-ray range
now also allows us to consider gratings as optical devices to be
used in instruments for this spectral range. The present grating
with laminar profile turns out to provide interesting symmetric
and efficient beam-splitting properties, as predicted by Goray
(2008). In gratings with other profiles, the diffraction with high
efficiency into a single order could be favoured and such
devices could then find applications in monochromators. Jark
(2016) showed that unusual tuning ranges, e.g. 600-6 keV,
could be scanned with just a single grating. Scanning in this
range presently requires the employment of several rather
different dispersing elements. The application of the conical
diffraction configuration has already been discussed for lower-
energy soft X-rays in space astronomy and in free-electron-
laser research. In the first case it is an efficient means for
the monochromatization of weak soft X-ray signals (see, for
example, Werner, 1977; Cash, 1991; Goray & Egorov, 2016),
while in the latter case at strong sources the efficiency
becomes an argument when two diffracting elements are used,
as proposed by Poletto (2004), in order to minimize the pulse
lengthening, which is inherent in the diffraction from single
reflection gratings. In both cases the rigorous calculation
approach described here holds the capability to become a
powerful tool for the optimization of the profile in already
projected spectral ranges with smaller photon energy, but also
when larger photon energies are considered.
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