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ABSTRACT
A rigorous modified integral method applicable for diffraction grating analysis working from x-ray -up to millimeter range
is presented. The changes have been made both in theory, and in numerical realization. In theory special attention has been
given to power balance criterion generalization for the case of absorbing gratings and to forms of Green's function
representations. in comparison with the well known integral method formulated by Maystre, a lot of fundamental
improvements have been made in the following numerical sections: the forms of representation of a groove profile, choice
of points for calculation of unknown functions, integration method, choice of numbers of collocation points and Green's
function expansion terms and their derivatives. For the first time stable convergence for all types of gratings and
wavelengths, including those with very deep profiles, high conductivity, small wavelength-to-period ratios, and, especially,
for TM polarization has been achieved and demonstrated. Examples of results are given for a wide range of transmission
and reflection gratings and parameters of light. Diffraction efficiencies calculated with the help of the developed method of
analysis are compared with published data and calculations performed by other researchers. All results have been obtained
using ordinary PC and commercially available program PCGrateTM 2000X.

Keywords: integral method, PCGrate software, diffraction grating, electromagnetic theory, efficiency modeling, relief
gratings, theory of grating, transmission gratings, reflection gratings, diffraction theory

1. INTRODUCTION
Among the large variety of rigorous theoretical approaches and their modifications used for calculation of diffraction
efficiency of gratings, the integral equation method has a special place. First, it was one of the first numerical methods, with
which help it was possible to solve important practical problems for periodic structures.' Second, it is the most universal and
powerful tool for diffraction research on gratings of all types in wide spectral range until now, despite of very intensive
development of other rigorous methods.2'3 In many important cases the integral equation approach is a single known
approach, acceptable from the practical point of view, for an accurate prediction of efficiency peculiarirties.36 For this one
has to pay in some complexity of the theory and various "subtleties" of numerical implementation, which are subjects of
many researches, including this.

This work covers important features of the presented realization of integral method (which was named earlier "modified"7)
and programs, developed on its basis, including commercial programs, in detail.8 Using this approach the finite-difference
integral equations have been deduced and a program taking into account all the best of integral method modifications, from
the author's viewpoint, has been developed. This code including all proposed changes allows one calculate rigorously
diffraction efficiency practically for all types of gratings in a very wide range of wavelengths from soft x-ray up to
microwaves, even for the most difficult cases of weak convergence, which are described together with other examples of
calculations in this work and quoted publications. All results are compared with approaches and data of other authors.

2. WHY MODIFIED?
Integral method applicable to diffraction periodic structures was well developed long ago. Here its basic moments are given
which are necessary for full understanding of modified method, and also taking into consideration discrepancies and typing
errors one can come across in the scientific literature. The comprehensible variant of the theory, with all final expressions
necessary for code developments is presented. Those who are interested in details and history of the problem can be
addressed to fundamental works."9 As for the term "modified" integral method used by the author in publications, it applies,
first of all, to a set of approaches of fundamental importance used in numerical implementation of the theory, and discussed
hereinafter. Though, such important practical characteristics, to which special attention is also paid in this work, as
generalization of power balance criterion for a case of absorbing gratings, or kinds of Green's function representations,
apply directly to theory of integral method and deduction of integral equations. For achievement of good results, rigor
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and equation completeness, as well as uniqueness of integral equation solution are necessary, but, by far, not sufficient to
obtain converging and steady efficiency values for many practical interesting cases. From this point of view, there is no
distinct border between approach and technique of its realization. Those who even only once tried to solve diffraction
problems by rigorous numerical methods, knows it for sure. Certainly, considerable progress in integral and other rigorous
methods of grating efficiency calculation, achieved for last pair of decades, is due, first of all, to their numerical
implementation techniques, and, also, to improvement of algorithms and computers.

3. DERIVATION OF INTEGRAL EQUATIONS
For brevity, derivation of integral equation is considered here only for a case when incident wave is polarized in the plane
denoted TM or s (electric-field vector is in the plane, perpendicular to the grooves). Such polarization plane is chosen for
two grounds. First, one seldom comes across description for this case in scientific literature, and, second, this case is usually
more difficult for calculations, and namely obtaining convergent results for a number of difficult cases is major point of this
work. Besides, results for TE polarization can be derived from similar expressions for calculation of unknown function
(current density) for the TM case by simple substitution of one for the permittivity ratios, which are present in these
expressions. More general case of arbitrary incidence angle named conical diffraction' and the case of multilayer gratings6
can similarly be considered without special problems, at least, from the point of view of problem definition and derivation
of integral equations.

Let the plane TM-polarized electromagnetic wave be incident from semi-infinite nonabsorbing space '+' on periodic relief
boundary surface S (grating) of semi-infinite space "—", in general case, with finite conductivity. A line of intersection of
this surface with plane XY is described by function f(x). The_surface S is infinite in directions of X and Z axes, d -period, j
- angle of incidence (to axis OY), h - the depth ofa groove, n - normal vector to the surface directed from "—" to "+". Inside
of finite-conductive metal there is electromagnetic field satisfying to boundary conditions at surface 5, and there is a current
with finite current density. A plane electromagnetic wave with wave vector k, lying, in our case, in plane XY, propagates
from direction of "+" medium (y > 0). For this case a wave of arbitrary polarization can be represented by a sum of TE (p)
and TM (s) polarized waves. There are only three components ofthe field (for a chosen plane ofpolarization they are H, E,
and Er), which satisfy homogeneous scalar Helmholtz equation for medium with electric permittivity c and magnetic
permeability of vacuum i-to (herein and hereinafter the case of not-magnetic media is considered):

AU+k2U=O, (2.1)

where U - any component field, and k kj arc4o, o cyclic frequency. Incident field U' at point M(x, y) above the
surface ofthe grating can be written in the form:

U' = exp[ik(sin()x—cos()y)] e, (2.2)

k k0ic =2zc/20, - wavelength in vacuum, ; - unit ort of axis Z. Herein and hereinafter the time factor exp(—icnt) is
omitted.

For the basic types of polarization the diffracted field of the same polarization is formed as result of diffraction of incident
wave in the space above the grating. For an incident field of arbitrary polarization, the polarization of diffracted field
depends on the grating properties.' Total magnetic field in the space above the grating can be represented by the sum of
incident field and diffracted field:

i:i= i+ d (2.3)

Ii is possible to calculate diffracted field above a finite-conducting grating assuming that the identical field to can be
produced by some current flowing in empty space on a surface, coinciding with the surface of the grating under
consideration. Then, the diffracted field in the space above grating and its normal derivative can be expressed in terms of an
unknown surface current. This enables one to consider the limit, to which the total field tends to when point of observation
situated above the grating approaches medium interface. The limit values of the field and its normal derivative when point
of observation approaches to this interface in lower medium are connected with the limit values of the field and its normal
derivative in upper medium by boundary conditions. Using Helmholtz-Kirchhoff integral for the description of the field in
lower medium one can derive the integral equation for a calculation of this unknown surface current.

For the case of TM polarization the electromagnetic field identical to the diffracted field, can be induced by fictitious
magnetic surface current. This current density Jm' designating current j, flowing through contour length unit of surface S
on plane XY perpendicular to the contour can be given in the form of:
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jn = jm6 (x — x')ö(y— f(x')) ;, (2.4)

where the product of Dirac delta functions 6(x —x')8(y — f(x)) is equal to 1 at x x' & y f(x') and is equal to 0 otherwise.
The Maxwell equations for a field formed by this magnetic current in the upper space are given by:

rot E = iot0 H; div E 0;
rot H = jm E; div H 0. (2.5)

It follows from these equations that the magnetic field amplitude satisfies the non-uniform scalar wave equation:

A H + (k)2H = 40Mjm6(X _ x')6(y— f(x')). (2.6)

The total field and, on the basis (2.3), the diffracted field satisfying equation (2.6) can be calculated as Helmholtz -Kirchhoff
integral over unbounded surface S taking into account the radiation condition:

H' = Js['(X, y, s')(s')ds', (2.7)

where s' - curvilinear coordinate along the profile line corresponding to rectangular coordinates (x, f(x)), 1(s') =—

W8Jm6 (x — x)(y — f(x')). The elementary solution of Helmholtz equation, function V(x, y, s')), is called Green's function
of upper half-space.'

The integration over all surface S can be reduced to integration over one grating period, taking into account the quasi-
periodicity of the incident field (2.2) and the diffracted field (2.7). This, the so-called Flocket condition, consists in that
increment d of coordinate x results in multiplication of function H by exp (idksin()):

H(x + d) = H(x)exp(idksin()). (2.8)

Therefore, integral in (2.7) can be considered as the sum of integrals over infinite number of grating periods, and Green's
function for upper half-space can be represented as infinite series with respect to n:

V(x, y, s')) = — x' — nd)2 + (y— f(x'))2]"2exp(indksin(), (2.9)

where H01 - Hankel function'° of order zero of the first kind. The Green's function in (2.9) represents radiation function of
infinite set of filament sources, equally spaced from one another at a distance of d, the radiation phase of which is taken into
account by an exponential factor. Zeroth term of this series takes into account at the point of observation (x, y) contribution
of the section of a surface located near to a point (x', f(x')) within the limits of one period of the grating, over which the
integration is made. All other terms take into account contributions of the similar sections located in other periods of the
grating to the left and to the right of the period of integration. Thus, integral over one period is equivalent to the integral
over all surface S.

The sum of cylindrical functions of radiation is equivalent to the sum of plane waves. With help of the Poisson summation
formula, the Green's function can be given in another form - in the form ofexpansion into series ofplane waves:

F(x, y, s') = [,DOO (exp(ian(x_ x') + iyny _ f(x')I)/y]I(2id), (2. 10)

where K = 2rr/d, c nK + o, a, ksin(), [(k)2— 1/2
y-components of wave vectors. At y > frnax(x') the waves

which are included in expansion into series (2.10) have the same components of wave vectors, as the waves forming
Rayleigh expansion' ofthe diffracted field.

The convenience of use of one of the equivalent Green's function (and their derivative) representation forms depends on
interesting asymptotics and accuracy of calculations, the topics discussed below. In case of high-conductive metal and fast
wave attenuation in it, the Green's functions of the medium can be calculated using expansion (2.9) in series of Hankel
functions, and the derivative - using series obtained from (2.9) by differentiation. In work' only zeroth term of such series
has been taken into account and its asymptotic has been calculated for an argument tending to zero. Such method of
calculation neglects interference of points of the surface, which are located in adjacent sections of partition. The numerical
investigations have shown, that such assumption is correct only for very high conductivity, inherent to metals in the middle
and far IR range. In the UV, Visual and near IR range one has to take into account the interference of points. Therefore, it is
not enough to have Hankel functions asymptotics for calculations of Green's function and its of derivative for metals. In this
work expansion of type (2.10) has been used, and number of terms has been optimized when necessary.

With the regard for Flocket condition and relation ds' = (1 + f(x'))dx', integrands in (2.7) can be replaced with new
integrands as follows:
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1+'(x', f(x')) = t(x', f(x'))exp(—ia0x')(1 + (f(x'))2)"2;
G(x, y, s') = exp(iaox)[°(exp(iKn(x — x') + — f(x')I)Iy]/(2id). (2. 1 1)

Now integral (2.7) can be represented as integral over one grating period:

H' JdG(X, x', y, f(x'))'+'(x', f(x'))dx'. (2. 12)

In the case of TM polarization, the integral in (2.12) describes tangential component of the magnetic field, that on the
surface itself, on which fictitious magnetic current flows, must be continuous. Therefore, while point M(x, y) is crossing
surface S the field described by integral (2. 12), must be continuous. It actually takes place, as the logarithmic singularity of
the Green's function, present in (2. 12) at x = x ' and y = f(x'), is integrable. The total field (2.3) in all space is equal to the
sum offields, one of which is defined by integral (2.12), and the other is falling down (2.2). Thus, the limit value of the
tangential component of the total field H for the point of observation M(x, y), moving above the grating to a point (x, f(x))
at surface S, is equal to the value ofthe total field at this point:

H(x, f(x)) = H'(x, f(x)) + JdG(x, x', f(x), f(x'))1P(x', f(x))dx', (2. 13)

In the case of TM polarization a normal derivative of the magnetic field is proportional to a tangential component of
electrical field (2.5), for which, in the presence of surface magnetic current, the following boundary condition must be
carried out:

EtEtjm. (2.14)

Hence (2.5), for the break ofnormal derivative ofthe magnetic field, a break condition is satisfied as follows:

(dHIdn)— (dH/dn) =WCJm. (2.15)

Differentiation of expression (2. 13) along normal gives half-sum of field normal derivative limit values, which are obtained
at approach ofpoint ofobservation M(x, y) to a point ofthe surface from below and from above:

((dH/dn) + (dH/dn))/2 = dH'(x, f(x))/dn + Jd(dG(x, x', f(x), f(x'))/dn')P(x', f(x'))dx'. (2.16)

From here, using (2. 12) and (2.1 5), an expression for field normal derivative limit value, at approach ofpoint of observation
M(x, y) to a point of surface S from above, is obtained:

(dH(x, f(x))/dn) dH1(x, f(x))/dn + O.51+'(x', f(x'))exp(iaox')I(l + (f(x'))2))2
+ Jd(dG(x, x', f(x), f(x'))Idn')1P(x', f(x'))dx'. (2.17)

Thus, the value of the total field and its normal derivative in the upper medium and on the surface boundary of medium
proves to be expressed by one unknown scalar functions 'F. The diffracted field is calculated by formula (2. 1 2). Green's
function normal derivative, included in the expression (2.16) and (2.17) is defined as follows:

+ ' ' , D . 2 . +dG (x, x ,y , f(x))/dn exp(ia0x)/(2d(l + f(x )) )[sign(f(x) — f(x))— f(x )cxIy )
. , . +x exp(iKn(x — x) + iy, If(x) — f(x)II (2.18),

where the sign function sign(f(x) — f(x')) is equal 1 , if (f(x) — f(x')) � 0, and —1 - otherwise.

Using the boundary conditions on the surface it is possible to determine values ofthe field and its normal derivative on the
same surface in the lower medium. In the case ofTM polarization, value ofthe field on the boundary in the lower medium is
equal to the corresponding value of the field in upper medium, and normal derivative value is calculated according to
boundary condition (2.24). If one considers all space as space filled with substance, then knowledge of a values of the field
and its normal derivative in this substance on the surface coincident with initial boundary surface of media, allows one to
describe the field under the surface with the help of Helmholtz-Kirchhoff integral also. At that, in the lower medium the
incident field is absent. In dielectrics there is a finite number of propagating harmonics which satisfy to the radiation
condition, and in absorbing medium all existing waves are fading while moving off from the boundary in the direction of
negative values of y. Therefore, if for a closed contour of integration is chosen a contour, adjoining to the line of crossing S
with plane XY, and closed at y—÷ — , then the contribution to Helmholtz-Kirchhoff integral along contour part, which is
infinitely far removed in direction y, is equal to zero, and all integral along the closed contour is equal to the integral along
part of the contour, adjoining to surface S. Green's function and its normal derivative in this integral are represented by
expressions similar of those used for the upper space in (2.11) and (2.18). They are obtained by replacement of values
with corresponding values y' for the substance under consideration:
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Yn_ = ((k)2 — a2)'12 Im (y) > 0; Im (y) = 0, Re(y11) > 0 (2.19)

where k = k0Jc, c — electric permittivity ofthe lower medium.

The integral equations for function kY are obtained on condition that in the integral under consideration the point of
observation moves from the lower medium on the surface ofintegration. Using expressions (2.12) and (2.16), and, also, the
considered boundary conditions, the integral equation for determination ofunknown function '-I' is finally obtained:

H'(x)12 + Jd [(c/&)G(x, x')dH1(x')Idn' +H1(x')dG(x, x')/dn'Jdx' =—O.5(c7&)JdG(x, x)1P(x')dx'
— O.5JdG(x, x')'+'(x')dx — JJd[G(x, x")dG(x, x")/dn" — (c7c)G(x, x')dG(x', x")Idn"]'P(x')dx'dx', (2.20)

where G - Green's function for the lower medium, and dG7dn' and dG7dn" are taken positive.

The amplitudes of the diffraction orders of number n in the upper medium can be obtained from (2. 12) and Rayleigh
expansion' for plane waves equating coefficients for the.corresponding harmonics:

—0.5i/(dyfl)Jd[exp(—iyflf(x') — inKx')'P(x', f(x'))]dx'. (2.21)

In practice, absolute diffraction efficiency ofthe grating is an important value. It is defined as a value ofthe energy flux,
going off from the grating in the n-th order, per unit of the incident energy flux flow. Then, for y-component of Umov-
Poynting vector we have:

(2.22)

The amplitude of the field and its normal derivative in the lower medium can be found from expressions similar to (2.13)
and (2. 1 7), as a limit at approach of a point of observation from below to the boundary surface S, taking into account the
expression for the diffracted field (2.12) on the boundary surface and boundary conditions. The boundary conditions in the
TM case ofpolarization are expressed in a continuity ofthe field on the boundary and in ajump ofits normal derivative:

(dH/dn)V(dH/dn) = c+/c_. (2.24)

Taking this into account, we obtain:

H(x, f(x)) = H'(x, f(x)) + JdG(x, x', f(x), f(x'))'P(x', f(x'))dx', (2.25)
(dH(x, f(x))Idn) (c7&)[dH'(x, f(x))/dn + 0.5'P(x', f(x'))exp(ia0x')I(l +

+ Jd(dG(x, x', f(x), f(x'))Idn')+'(x', f(x'))dx']. (2.26)

Amplitude ofthe n-th diffraction order in the lower medium can be expressed with the help ofexpressions (2.25) and (2.26):

A,, = (—0.51d)Jd{ [(—1 — f(x')cIy)H(x', f(x')) + (dH(x', f(x'))Idn)7(iy)] exp(iyf(x') — inKx')}dx'. (2.27)

In the case of dielectric lower medium, the diffraction efficiency for n-th order is calculated as follows:

= AI2y cI(y (2.28)

On the basis of Umov-Poynting theorem it is also possible to determine energy WA, absorbed by material of the grating per
unit of time. It is equal to the integral for the normal component of energy flux density w, calculated on the lower closed
surface S:"

WA IS = IS W fl ds', (2.29)

where w= Ex H - Umov-Poynting vector in the lower medium. Taking into account (2.5), quasi-periodicity of the field,
and, also, the complex valued amplitudes and their normal derivatives, it is not difficult to obtain value WA averaged over
time:

EA = 0.5JdRe[(dH/dn)_H*_/(koc_)]ds, (2.30)

where H*_ - conjugate complex value of a field amplitude in the lower medium, (dH/dn) - normal derivative of a field
amplitude in the lower medium.

Normalized to unit of incident field energy flux, the value EA, added to the sum of all propagating harmonics efficiencies E,,,
expresses nothing else but the energy conservation law for gratings and generalizes it for the case of finite conductivity.
Together with the reciprocity theorem, the compliance of infinite conducting and dielectric gratings with this law is always
one of the basic criteria for testing correctness and reliability of developed programs'. Now, with the help of simple and
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natural definition (2.30) of physical quantity EA, it can be also used for the most important case of finite conducting gratings
with the same degree of rigour (namely, for sufficiently smooth surfaces'°). The author for a long tim&2 has been applying
this useful generalization of the energy conservation law to calculations for absorbing gratings with any relief profile and
never had grounds for doubts about correctness of its introduction. Use of EA will be illustrated further with numerical
examples.

4. FEATURES OF NUMERICAL REALIZATION
The solution of the integral equations is obtained by a known point matching method (collocation method), based on
replacement of an integral equation by system of linear algebraic equations. It assumes a finding of N values of unknown
quasi-periodic function kY, which can be approximated by step function in N points of one grating period. At the same time,
certain requirements for continuity and smoothness of functions bY and f(x)1 are imposed. Solution of a system of N linear
equations in N unknowns by such method is, in general, incorrect. At the approximate numerical solution of integral
equations reducing them to a truncated system of linear algebraic equations, we obtain an ill-conditioned system, all matrix
elements of which have identical order of magnitudes. This is the major source of errors and it must be taken into account at
construction of numerical algorithm.

For the integral equation of the first kind there is a logarithmic singularity in its kernel,' that is square integrable. However,
for this reason the diagonal matrix elements of algebraic system are greater than off-diagonal elements. This forms a basis
for self-regulation realization13 for the Fredholm integral equation of the first kind such as (2.20). Construction of an
effective algorithm for Green's function calculation is based on extraction of logarithmic singularity in an explicit form.'3'6'9
Often an accuracy of obtained results and the calculating time of task depend on correct account of Green's function
singularity. However, as show numerical researches of the author, such specification is not always justified, (e.g. for some
problems due to particularities of integrand numerical calculations (see below), for sufficiently high values of N) and
requires separate research. Kernel of integral equation of the second kind at coincidence of an argument has removable
singularity and it does not require of special extraction of this singularity at numerical realization. At that, the system is
frequently ill-conditioned, as in some examples given below.

Let's divide contour f(x) by points xk, k O;N, x0 xN into N parts. Function 'l'(xk, f(x,j) on each interval [xk, xk+,I is
considered to be constant. At that, integral equations (2.20) are reduced to a system oflinear algebraic equations like this:

O.5k}(xj, f(x)) + k=Ocjk'F(Xk, f(xk)) =b(x, f(x)), j = 1 , N.

Let's make the solution at N midpoints of intervals [xk, xk+,] and replace integrals over all period in (3 .I) with the sums of
integrals over intervals. These integrals are calculated with good approximation for some N and an appropriate choice of
integration method. For more accurate approximation to sought function by mesh function it is desirable to choose interval
[xk, xk+,] small enough to enable calculations for quickly varying functions. On the other hand, the account of kernel
singularities in integral equation (2.20) and necessity of obtaining a well-conditioned matrix in system (3 .I) require one to
choose an integration step large enough. Here we come, perhaps, to the most important point connected with use of a
suitable integration method. As shown in work1, in case of regular kernel and periodic integrand function in the right part,
which takes place in (2.20), a step function approximation of integrand expression, with division of integration interval
(period) into equal parts, is preferable. Such method of integration is mentioned as rectangle rule or trapezium rule, what, in
this case, is equivalent. Indeed, this simple approach gives good results for many applications. However, in the most
difficult cases its use does not produce good convergence of computed results even for very large N (about one thousand
and more). First of all, efficiency calculations for the following types of gratings: very deep, deep with vertical slopes of a
groove profile, deep high-conductive, deep with the small wavelength-to-period ratio, with the arbitrary (real) form of
groove profile, and also echelle are related to such cases. It is especially correct for TM polarization and near to various kind
of anomalies.'4 For improvement of integration accuracy, one can try to divide the profile by points set along axis X non-
uniformly to increase their density near the edge or on the abrupt side, but it is not clear according to what law it must be
done to integrate with high accuracy the periodic integrand expression. Until now, any acceptable decision is not known on
this way.

The other approach follows from the integral equation for of diffracted field (2.7) itself - integration along arc length of
contour f(x). But its difficulty consists in impossibility, for an arbitrary contour, to express coordinates of its points through
arc lengths. Fortunately, for gratings, approximated by intervals of straight lines, it is not a problem. In this case, coordinates
of surface points, are easily calculated by simple dividing of coordinate on axis X by cosine of inclination of the interval,
and curvilinear integral along arc length is replaced usual. For a long time (at least, since work15), the author has been using
this approach for solution of, practically, any diffraction problems for gratings for several reasons. First, it is almost as
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simple, as approach1, but with far better results for the difficult cases described above. Second, it is equivalent to approach'
for symmetric profiles and profiles with vertical slopes, and, asymptotically, transforms at decreasing depth and steepness of
a profile into the approach,1 and can be successfully used equally with it for calculation of any shallow and flat gratings. At
last, third, it allows one to calculate very accurately the efficiencies of gratings, which profile has been measured earlier by
any experimental technique: with help ofAFM, STM, SEM, interferometer ofhigh magnification, Talystep & other,'6'9 and
reliefofgroove profile has been represented by real points, instead ofusing its Fourier expasio.'

On the basis of aforesaid, the integrand expression in (2.20), taken at the midpoint of interval AXk, is factored outside the
integral sign and multiplied by interval length equal to:

Axk = xk+1 — xk = d/(Ncos(Ok)), (3.2)

where °k inclination of an element of groove profile. At that, the matrix elements of equations (3 .1) look like:

N—i + ck = — O.5Axk{(c7&)G(x, xk) + Xk)

+2AXk 1=O [G (xj+112, xk)dG (xi, x,+112)/dn1+,12) — (c /F: )G (xi, x1+112)dG (x,+112, xk)/dnl+,/21} . (3.i)
The free term ofthe equation (3.1) looks like:

b(x) = O.5H'(x) + k=o[(c/c)G(x, xk)dH(xk)/dn + (dG(x, xk)/dnk)H(xk)IAxk. (3.4)

The Green's functions and their derivatives for the upper and the lower half-space are calculated similarly, according to
(2.1 1), (2.18) and (2.19):

P±G (x,xk) = =—i+ {e ) exp[ryn f(x) — f(xk)I + inK(x — Xk)}, (3.5)
—1 M± .

dG (x, xk)/dnk (2d) n=—M± [sign(f(x) — f(xk)) — f(x,k)afl/yfl ]exp[ryn f(x) —f(xk)l + inK(x — xk)1, (3.6)

where j , k = j - for the upper medium, and j , k = k - for the lower medium.

As follows from (2.7), the contribution of portions of surface S is proportional to both current values on these portions, and
Green's functions. Interference of portions the weaker, the farther they are from one another on surface S. Therefore, there is
no necessity for infinite limits of integration to obtain a sufficient accuracy of calculations of the integrals in (2.7) in the
fixed point of observation. The limitation of numbers of series terms (3.5) and (3.6) for the lower and the upper medium,
correspondingly, by P and M, means, for integration, the limitation of number of the grating periods, which interference
contribution must be taken into account to obtain necessary accuracy of calculations. However, values of P and M can not
be more, than N, as, then, the matrix elements in (3.3) begin to diverge. In general, all these numbers must be optimized for
each specific case. The rule proposed in1 P M = 2N/3 is far from being optimal for many cases and depends on specific
numerical realization. For usual cases of calculations, more optimal "golden" rule is proposed in the present realization of
integral method:

p±=M= P =N12. (3.7)

For obtaining (N+ I )2 coefficients of system (3 .1) one must execute number R of complicated operations with complex
exponential functions:

R=(N+1)2P. (3.8)

Therefore, a choice of P for the benefit of a smaller number is very important during realization of long calculations. At that.
it is naturally supposed, that values coincide with required accuracy. As for considered difficult cases, for some of them this
"golden" rule serves very well, but other cases need optimization of parameter P (see Sections 5, 6). Fortunately, for the
considered examples, optimization of P and M was never required.

Incident field and its normal derivative are calculated in accordance with (2.2) by the expressions:

H1(xk) = exp(—iy1f(xk)), (3.9)
dH'(xk)/dn = —i(y, + cxOf(xk))exp(—iyf(xk)). (3.10)

Set N of numbers kP(xk), which are the solutions of the system of algebraic equations (3.1), allow one to calculate values of
a surface magnetic field and its normal derivative (2.25, 2.26):

H(xk) = H'(xk) + Axk l_oN_lG+(xk, x1)'P(x,), (3. 11)

(dH(xk)Idn) (c7c4)[dH'(xk)/dn + tJj(xk)/2 + Axk l,N_I(x,)dG±(xk, x,)/dnk], (3.12)
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where c/c = I for the upper half-space.

The amplitude of the n-th diffraction order propagating above and under the grating, is calculated according to (2.2 1) and
(2.27):

+ . + N—I .+A = AXk/(2ldyfl )K=O exp(—ryn f(xk) — lnKxk)'P(xk) (3. 1 ,)
A = AXkI(2d)KO[(1 + aflf(xk)/7fl)H(xk) + (iyfl)1(dH(xk)/dn)]exp(iyflf(xk) —inKxk). (3.14)

Corresponding efficiencies ofthe orders are obtained from (2.22) or (2.28), and the absorption is obtained from (2.30):

EA K=ORe[(dH(xk)/dn)H (Xk)/(2iwc)]AXk. (3 . I5)

5. CONVERGENCE OF CALCULATIONS
A difficult enough and interesting example from work2° has been chosen for demonstration of convergence of the obtained
implementation of the modified integral method on optimization parameter P (number of Greens function expansion terms)
and truncation parameter N (number of collocation points). A triangular metal grating with a vertical facet, electric
permittivity of metal = —21 + i.60.4, depth equal to the grating period, and 2/d 0.7 has been illuminated by TM-
polarized wave at angle 25° with respect to the flat facet. In Fig. 1 the convergence of efficiency calculation results for three
orders (0, —1 and —2) and total energy balance for number P is shown at the values of truncation parameter N equal to I 00,
300 and 500. It is evident the results converge for all three values ofN at value ofparameter P, close to 100% relative to N.
For P, according to a "gold" rule (P = N/2), the efficiency values and the balance are still far from converging values. At
first, the convergence is fast and oscillating and then, after reaching monotonous part ofthe curve, it is slow, but stable. The
spread in values is the less, the higher truncation parameter N.

1 1

0.8 0.8 -

0.6

0.4 0.4. .
0.2 0.2

0 — - 0 ,

10 30 50 70 90 100 300 500 700 900

P,% ofN numberofpointsN

Fig. I . Absolute efficiency in 0, -1 and -2 orders and balance Fig.2. Absolute efficiency in 0, -1 and -2 orders and balance
of a grating from,2° as a function of P for N = 100, 300, 500. of a grating from,2° as a function ofN for P = 50, 75, 1 00%%.

The above mentioned statements are proved by dependence for efficiency values on truncation parameter N, presented in
Fig.2. The curve for P = I00% (P N) is changing monotonously and very slowly with increasing N from 100 to 1000, i.e.
by one order. The relative error for N 100, in comparison with values obtained for N1000, makes up several percents for
absorption and all the orders, except for the 0-th order, and 7% for this low efficiency order. Approximately, the same
difference (see column 3 in Table 2) is observed comparing to work2° and it tends to decrease with increasing N. Thus, the
convergence for truncation parameter N is very fast for this example for the chosen optimum value P. For P = 75%
convergence is good, but slower, than for P = 100%. For P = 50% the convergence also takes place, but it is much worse,
than in case of the optimum P, especially, for the 0-th order. Therefore, in similar cases, it is more efficient to optimize at
first parameter P for small N, and, then, to calculate efficiency with required accuracy for N with the obtained P.
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It is interesting to note, that in the examples, considered below, optimization of parameter P is required in single case, also
for an asymmetric triangle (see column 2 in Table 3). In that example the optimum P makes up only I 0% because of high
conductivity of a grating material and small ratio ?Jd 0.1.

6. EXAMPLES OF CALCULATIONS FOR DIFFICULT CASES
To show opportunities of the modified integral method and programs, created on its basis, including commercial ones,8 a
number of examples difficult for calculations have been chosen for deep and super-deep transmission and reflection
gratings. These calculations are really difficult, and until to-day many of them are hard to fulfill for integral and other
rigorous methods.2 All results obtained here, are compared with the published data and calculations, kindly performed by
the professor Lifeng Li. The modeling of efficiency has been carried out on a PC with IntelTM Pentium III 733 MHz
processor, 256 KB Cash and 128 MB of RAM, working under MSTM Windows NT, v. 4.0. All results have been obtained
with the help of the commercially available program PCGrateTM 2000X,8 written on programming language C++.

In Tables I -3 the calculation efficiency results for dielectric and metallic gratings for the various groove profiles with depth
up to h/d = 1 0 and parameters corresponding to a wide range of spectrum from VUV to middle IR are given (positive
incident angle is on the left ofthe normal). Now, from the point ofview ofthe theory, as deep gratings are considered those
with depth of about grating period, and as very deep gratings - those with depth of several periods and, even, ten or more
periods. The modern state of technology, in principle, already provides manufacturing of very deep gratings of
spectroscopic quality.2 Before the present work, such deep gratings have been considered not to be analyzed by any integral
method.2 1-24

The results of calculations for dielectric gratings, basically, for TM polarization, are given in Table I . As examples of
calculations, the author presents more gratings with a vertical facet ofa groove profile (lamellar and asymmetrical triangular
with left angle O and right angle 02) for two reasons. First, one meets this type of a profile more often in the publications
about very deep gratings. Second, not all values obtained in2' by modal method for the sinusoidal gratings are accurate
enough. For instance, for TM polarization, the author2' used only 10 partitions for representation of sinusoidal profile by
rectangular layers at ratio hid 1 for a metallic grating.

Table 1 . Diffraction efficiencies ofvarious deep and very deep dielectric gratings, %.
Order Sinusoidal, d/2 =1.7, hIdl,TM

pol., =3oo, c=1 c2.25,
Triangle, d/2 1, h/d=2.1,

0 290, 4=3Ø0, c=1 c=2.5
Triangle, 2Jd =0.7, TM pol.,

hIdl.0, 0 290, =25°, cl,
c=2.25

Lamellar, d/? =1.0,
h/d10, TM p01.,
=30°, cld=0.5,

=2.5
MM

Li,21 50
layers.

41
modes

IM
Li21

IM
Goray,

N1500,
P=750

CWM
Mohar. et
al,22 100
lay., 12
har., TE

IMGoray,
N=1500, P=750

CM
Plumey
et al,2°

131
har.

CWM
Plumey
et al,2°
lOOlay.,
1 1 1 har.

IM
Goray

N1500,
P750

MM
Li,25 200
modes

IM
Goray.

N=1700,
P850TE

pol.

TM
pol.

R3 - - - - - - - - — - -
R_2 0.173 0.145 0.186 — — — 2.70 2.68 2.56 — —

R1 0.0667 0.0816 0.0638 —l.0 1.31 0.541 0.1 0.096 0.102 0.150 0.330

R0 0.0187 0.0306 0.0222 —0.5 0.590 0.288 0.006 0.006 0.0058 3.071 3.213

R+1 — - - - - - — - — - -
R2 - - - - — - - - - - -
R3 - - - - - - - - - - -
T_3 1.28 1.22 1.23 — — — — — — —

T_2 21.3 21.2 21.2 —0.5 0.415 11.2 12.19 12.09 12.521 0.0709 0.0748

L1 46.2 46.4 46.3 51.0 51.5 43.4 21.99 22.01 22.08 13.89 13.12

T0 18.4 18.6 18.5 44.5 44.6 33.4 62.48 62.58 62.09 80.41 79.65

T+1 12.6 12.7 12.4 2.5 2.15 11.6 0.532 0.536 0.451 2.40 2.45

T+2 - — - - — - - — - - -
T3 - - - - - - - - - - -

Balan. 100. 100.38 99.92 100. 100.60 100.41 100. 100. 99.81 100. 98.84

In work21 the conclusion has been made, that for such deep gratings the number ofpartition layers is not big enough as real
calculated profile differs considerably from perfect sinusoidal profile. The result of the comparison for sinusoidal grating,
given in Table 2, confirms this conclusion. For comparison, in this work the profile has been approximated with 500-2000
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points to obtain accurate results for very deep gratings. Therefore, there are certain differences in the results given in the
tables for the coupled-wave method, modal method and Chandezon method, and various variants of integral method. Out of
the calculations performed by different methods with about the same accuracy, the calculation results obtained by integral
method for non-lamellar profile types are preferable.

Table 2. TM Diffraction efficiencies ofdeep metallic gratings, %.
Order Lamellar, d/? =1 .0, TM pol., Sinusoidal, d/2 =1 .7, h/d=1 , Triangle, X/d =0.7, TM pol., Triangle. ?/d=O.5.

h/d=l, =3ØO, c=1
c=(O.22+i6.7l)2

TM pot., =3Ø0, e=1,
c=(O.3+i7.O)2

hld=1.O, 02=90°, =25°, c=l
c=—21+i.60.4

O=3O0, 0260°.
=15°, TM,

c=( I .O+i5.O)2
MM CWM TM MM TM TM CM CWM IM CM IM
Li,23
121

Granet
et al,26

Goray,
N500,

Li,21
105

Li21 Goray,
N500,

Plumey
et al,2°

Plumey et
al,2° 100

Goray,
N500,

Li et
al,27

Goray.
N500.

modes I 2 1 har. P=250 modes P=250 1 3 1 har. lay., 1 1 1 liar. P=500 5 1 har. P=250

R_2 — — — 12.64 15.7 18.81 46.88 42.75 46.39 70.04 69.80

R1 10.16 10.15 10.16 6.03 7.9 10.96 10.39 10.43 10.64 2.767 2.866

R0 84.84 84.74 84.32 66.09 56.6 57.89 1.697 1.459 1.595 2.499 2.566

RHI
— — — — — — — — — 0.9757 1.063

Absorp. 5.0 5.11 4.99 15.24 — 12.55 41.03 45.37 41.89 23.72 23.78
Balance 100. 100. 99.47 100. — 100.22 100. 100. 100.52 100. 100.07

Table 3. TM diffraction efficiencies ofvery deep and liigli conducting metallic gratings, %.
Order Sine, d/2 1.7, Triangle, d/X =10.0, h/d=2, TM Lamellar, d/X 1.0, TM Lamellar., d/2 1.0, h/d=1, TM

h/d=2, TM p01., polarization, 0=90°, =—3°, cl, p01., li1d4.8, =30°, polarization, =30°,
=30°, c=l, c=(6.43+i39.8)2 c=l =(1 1.5+1.67.5)2

c=(0.3+i7.0)2 c=(0.22+i.6.7 1)2
CM
Li,25

IM
Goray,

CM Li,25
451

IM ic.
Goray,

IM
Goray,

CWM
Granet et

IM
Goray,

MM
Li,25 400

IM ic,
Goray,

IM Goray
N=1800,

41 N=l700, harm. N=2000, N1000, al,26 121 N1800, modes Nl000, P900
harm. P850 P1000 P100 harm. P900 P500

R_6
— — 0.644 0.736 — — — — —

R_5
— — 1.073 1.714 1.265 — — — — —

R_4
— — 2.229 2.161 2.352 — — — — —

R_3
— — 32.47 31.28 32.12 — — — — —

R_2 42.21 41.39 6.974 12.39 8.455 4.99 8.116 95.55 97.92 93.78

R_1 14.44 13.69 1.089 3.197 1.202 49.95 44.27 0.0522 0.0053 0.0461

R() 24.80 24.55 0.0342 0.0510 0.0727 — — — — —

R1
— — 0.356 0.477 0.441 — — — — —

R2 — — 0.960 1.113 1.013 — — — — —

R3 — — 20.15 21.53 18.34 — — — — —

R4 — — 12.35 14.05 11.10 — — — — —

Absorp. 18.56 18.46 13.12 1.57 13.72 54.06 46.15 4.40 1.12 4.44
Balance 100. 98.09 100. 99.95 99.44 100. 98.54 100. 99.04 98.27

The examples of TM efficiency calculation are given in Tables 2-3 for deep and very deep reflecting gratings with various
profiles of a groove and refractive index of metal, including for middle IR range. It is known, that efficiency calculations for
finite-conductive metallic gratings in near and middle IR ranges for TM polarization are difficult for many methods,
including the integral method, because of high refractive indices of grating materials. For such examples the calculations for
aluminum grating with asymmetrical triangular profile (with a vertical left facet) for ?c/d 0. 1, h/d 2, and 2 4 tm were
included in study at an incident angle of 3 degree with respect to the less abrupt facet (see column 2 in Table 3), and, also,
for golden lamellar grating (see column 4 in Table 3) for 2Jd hid 1 and 2 10 .tm with parameters from.23 The method
offered in2 for wavelength of 10 im and TM polarization has bad convergence:24 the value of absorption for this point
from23 is more than I 0%, whereas other predictions made with the help of integral and modal25 methods give a value of
about 4-5%%. For these points the results obtained by integral method within approximation of infinite conductivity and
multiplied by Fresnel reflection factor also are given. From comparison one can conclude, that approximation of perfect
conductivity, contrary to the existing opinion,"2 for such deep gratings for 4 .tm and even for 10 pm does not give correct
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results for TM polarization. It is evident from value of absorption, which has been accurately calculated by the presented
integral method. As for the essential difference in results from column 2 in Table 3, it is, probably, due to slow convergence
of Chandezon method for this point because of the small wavelength-to-period ratio. The results from column 3 in Table 3
calculated with the help of our program are not so good in comparison with results,26 due to slow convergence of the
modified integral method for such a deep grating. However, there is no doubt they converge to values close to values from.26

As one can see from Tables I -3, the efficiencies obtained by other rigorous methods and authors, agree well, despite of the
very large depth, high conductivity and TM polarization, with values given in this work, especially, for the highly effective
orders. This coincidence is especially impressing for profiles of a groove having vertical slopes considered to be the most
"difficult" cases for an integral method. Almost for all results, obtained by the author, the total error for energy balance did
not exceed %. For the depths about one period it has value that is several times or an order of magnitude less.

Our experience in numerical calculations proves, that for high enough values ofN the modified integral method gives stable
and equally good TE/TM convergence for deep and very deep dielectric and metallic gratings for, practically, any
parameters and any form of a groove profile, including real, i.e. measured by any method. At that, optimization of parameter
p is necessary seldom, though the time of calculation with the above-stated accuracy of one point for such deep diffraction
gratings makes up from several seconds till several hours on mentioned PC. In practice, it is a rare case to investigate very
deep gratings and, as a rule, there is no necessity for calculations with very high accuracy. For example, from energy
balance it is sufficient to have only 150 points to obtain a total error no more than 1% for calculation ofthe grating from the
data ofcolumn I in Table 1, i.e. 10 times less, than it is required for the result in the table. At that, the time ofcalculationin
accordance with (3.8) decreases, approximately, 1000 times, and the relative error for the most and least accurate results
makes up from several percents for high efficiency orders up to several tens percents for low efficiency orders. Hence, for N
= I50 the accuracy is good enough for correct prediction ofhigh efficiency values and insufficient - for low ones.

7. CONCLUSION
In conclusion it would be desirable to compare resources ofthe developed modified integral method relative to other known
realizations of methods (coupled-wave, modal and Chandezon) for calculations for deep and very deep gratings, including
those with a real profile of grooves.

The coupled-wave and modal methods are certainly preferable for calculations of gratings with lamellar profile, as, in this
case, convergence and accuracy of these methods depend slightly on grating depth.2124 For other types of perfect profiles,
these methods and Chandezon method are comparable in accuracy and computing time with the integral one. The coupled-
wave and modal methods require not less than 50- 1 00 layers of partition for accurate approximation of gratings with h/d
10 and d/X I 21-26 the case of the high ratios d/X this number must proportionally be increased, especially, for TM
polarization. In the case of metals, the internal convergence of methods themselves is deteriorating with increase of d/2 and
conductivity of material. This requires of increase of truncation parameter, on which the computing time depends
cubically.24 All this results in long time of efficiency calculation for deep and very deep non-lamellar gratings, despite of
certain simplicity and fast convergence ofthe successful implementation ofthese methods for lamellar profile. At last, these
methods are considered to be practically unacceptable for gratings with real, i.e. measured profiles of a groove. The profiles,
measured by any modem method, contain, as a rule, more than 100 points1719 (even 500 and more). For the accurate
approximation of such profiles it is required some times even more partition layers, i.e. it is necessary to use about several
hundredths, and even thousands of partition layers. Besides, during such calculations it is necessary to use increased
accuracy of the solution for each layer, as the total error increases with growth of number of layers. Therefore, the accurate
efficiency calculations for deep gratings with the real form of grooves performed by modal or coupled-wave methods on
modern PC, even for individual points, are considered by the author rather problematic. This seems to be true for
Chandezon method as well, that weakly converges at calculations for large d/X (especially, for the high orders) and at sharp
jumps of groove profile function derivative, what is typical for real profiles.

Unfortunately, examples of efficiency calculations for many types of gratings: echelle;3'8'18'25 for soft x-ray and XUV
ranges,7'2'1'5 including with the real groove profile;4'5'8'17 with a real profile for other spectral ranges;8"9 have not been
included in this work. All these examples can be found in the cited above literature or in the special future investigations.
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