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ABSTRACT 
 

The rigorous integral equation method (viz MIM) in which the border structure is represented by a multilayer 1-D 
grating working at small wavelength-to-period ratios is used for taking into account electromagnetic scattering from 
different-types of nano-irregularities, such as periodical, random, self-organized, and their combinations. An example of 
the third type is multiple quantum dot (QD) ensembles and quantum molecules. The borders may contain a few or a 
large number of asperities of any kind. The program deals with a structure that is a grating from a mathematical point of 
view but that can model a rough surface if the groove spacing becomes large compared with the width (or correlation 
length) of asperities. This classical model for scattered light computation of bulk or few-border rough mirrors and 
gratings at visible and IR wavelengths is applied in PCGrate®-SX v.6.2 software based on the MIM to calculate 
multilayer structures in the X-ray–VUV range, which is a very difficult problem for any rigorous method, even for 1-D 
surfaces. Border profiles of most realistic types including real ones (e.g. AFM-measured) have both periodical and 
random components, and some ensemble averaging is required to obtain exact specular and nonspecular (diffuse) 
scattering intensities. The PCGrate results are compared with the data obtained by approximated approaches and 
measurements. Calculated intensities of scattering from gratings and rough mirrors as well as multiple QD structures can 
differ from those obtained for ideal and average border profiles or from approximations by a few percent up to a few 
orders of magnitude. The method can be applied both to forward computations of efficiencies over a wide range of 
angles and to fitting of the border metrological performance by comparing to measured data.  

Keywords: X-ray–VUV metrology, specular and nonspecular scattering, X-ray reflection, diffraction gratings, rough 
multilayers, quantum dot ensembles, rigorous electromagnetic theory, boundary integral equations, grating efficiency 
modeling, PCGrate® software  
 
 

1. INTRODUCTION 
 
Rigorous methods of analysis, the most universal and, at the same time, the most difficult approach to development of 
an algorithm and obtaining numerical results, are used for diffraction gratings of various kinds and non-periodic 
corrugated structures, as there is actually no other alternative. These methods offer a rigorous way to gaining 
information on the scattered field which cannot be obtained with asymptotic techniques such as the Kirchhoff 
approximation or small-perturbation methods. To solve Maxwell’s equations without invoking approximations, 
excluding those needed for discretization and truncation, one would have to tackle the problem of scattering by 
irregularities of any type having an rms height and/or correlation length (width) of the same order of magnitude as the 
wavelength. Even for today’s computers, rigorous computation of the field scattered off rough surfaces is one of the 
most difficult problems to handle in electromagnetism and optics. The one-dimensional surface problem (i.e., the case of 
cylindrical surfaces) cannot be considered in a general way, because one has to deal in this case with multi-boundary 
surfaces having a large number of large asperities illuminated at grazing incidence and with short wavelengths. 
 
Among the large variety of exact theoretical approaches and their modifications used for calculation of diffraction 
grating efficiency and scattered light intensity, the boundary integral equation method occupies a particular place. 
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Integral methods are intended to yield the total field and/or its normal derivative on the surfaces; these surface 
unknowns are linked to the incident field through integral equations, and the method of moments (collocation) 
transforms these equations to a linear system. It was one of the first numerical methods capable of providing a solution 
to problems of practical importance encountered with periodic and non-periodic structures [1-3]. One should add that 
despite intense development of other rigorous methods [4-6], boundary integral equations remain a universal and 
powerful tool in diffraction research as applied to gratings and mirrors of all types over an extremely broad spectral 
range [7-12]. In many important cases, the integral equation approach is thus far the only way acceptable from the 
practical point of view and capable of providing accurate predictions of diffraction features [13-16].  
 
The PCGrate® software [17] is based on a modified method of boundary integral equations (MIM) [9, 15, 18]. The 
PCGrate programs enable the user to accurately solve the periodic boundary value problems which describe the 
incidence of a light beam on the relief or phase diffraction grating or mirror. Our software is indispensable for efficiency 
calculations of diffraction problems in the shortest wavelength range, from hard X-rays to VUV, due to the optimization 
of the number of plus and minus terms in Green’s functions and their normal derivative expansions, an extended 
approach to the accounting of single-term corrections, and various refinements at the algorithmic level. PCGrates are 
especially convenient and accurate for efficiency modeling with a real groove profile function. A particularly revealing 
illustration to this is the case of border profiles determined by: atomic-force microscopy (AFM), transmission electron 
microscopy (TEM), micro-interferometry, stylus profilometry, as well as by indirect methods like actual scattering 
measurements or modeling, etc [11, 15, 19-20].  
 
Further progress in the investigation of random atomic-scale roughness in multilayers and of self-assembled structures 
such as quantum dots (QDs) or other low-dimensional surface irregularities with typical sizes on the order of 10-nm or 
even less and having unique optoelectronic properties requires development of methods that would provide more 
accurate characterization of structural details [21]. Non-destructive X-ray reflection generally has the potential to 
investigate the fine structure of such complex samples. However, multiple and multi-wave diffraction, refraction, 
absorption, and resonances influence significantly X-ray scattering from nano-irreqularities, and these effects are taken 
into account by present theories only approximately. The MIM employed in the analysis of diffraction by gratings is 
extended here to the case of 1-D non-periodical and quasi-periodical structures of any kind. The software developed (viz 
PCGrates-S(X) v.6.2) allows one to operate with exact models based on Maxwell's equations, exact boundary 
conditions, and radiation conditions. The present report dwells on an application of a comprehensive numerical analysis 
of X-ray scattering from multi-boundary surfaces having asperities of different shapes, lateral and vertical correlation 
lengths, surface densities, and fractal dimensions, with the use of a low- or mid-end workstation in a reasonable 
computation time. 
 
 

2. MODELS OF A ROUGH SURFACE 
 
The height probability distribution of a rough surface is often taken to be Gaussian. If the profile of a surface derives 
from a large number of local independent events whose effects are cumulative (such as the formation of evaporated thin 
films), the resultant height will obey nearly Gaussian statistics. The Gaussian height distribution function is 
 
     p(y) = (1/σ√2π) exp{−(y − y0)2/2σ2}      (1) 
 
where σ is the rms height of the surface (variance). 
 
Gaussian variates have the remarkable property that the random process is entirely determined by the height probability 
distribution and the autocorrelation function C(y). The correlation function plays a fundamental role in the surface 
aspect. The frequently used form of the correlation function may also be Gaussian so that 
 
        C(y) = σ2 exp{−(y − y0)2/L2}.     (2) 
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The correlation length L identifies the typical distance between two different irregularities (or bumps) on the surface. 
Beyond this distance, the heights are not correlated. The power spectrum density (PSD) function that can be directly 
obtained from AFM measurements is just the Fourier transform of C(y).  
 
Although the Gaussian correlation has been used by many authors, most of the natural surfaces present many lateral 
length scales. Often found in the literature is the correlation function defined by 
 
     C(y) = σ2 exp{−(y − y0)2H/L2H}     (3) 
 
with 0 < H ≤ 1.  
 
The Hurst exponent H describes the height fluctuations on the surface: small H values specify very rough surfaces, 
while if H is close to 1, the surface is more regular. The fractal dimension is 3 – H, and if H = 1, the fractal dimension of 
the interface is 2 (it equals its topological dimension) and the interface has a non-fractal (Gaussian) nature. Non-
Gaussian distributed surfaces have also been studied, mainly within the framework of scattering from the ocean. The 
mechanism for surface generation is then more complicated.  
 
The physical model describing the growth of multiple QD ensembles was employed as a basis for development of a 
structural model of a growing In(Ga)As/GaAs superlattice with pyramid-shaped InAs QDs (triangles in the plane) and 
the corresponding face slope [22]. It was shown also that in perfect crystalline structures with vertically correlated QD 
ensembles there is an additional long-range QD ordering on lateral planes which gives rise to corrugation of crystalline 
planes and results in a quasi-periodical distribution of the elastic deformation and QDs [23]. To rigorously include the 
quasi-periodicity of QD ensembles in diffraction calculations, the author used the model in which the rough surface is 
represented by a grating, with the large period d containing a few or a large number of quasi-random nano-ripples. In 
this model, the QDs lie in the lateral (growth) plane, they are, on the average, ordered, and have the same average step 
determined by the growth density. We shall assume for the sake of simplicity that random displacements of the QDs 
from their average positions are not correlated, and that displacement dispersions, QD sizes, and average QD separations 
in each period are the same. The degree of vertical correlation can be varied by displacing laterally one boundary 
relative to another or by adjusting properly the sets of displacements, sizes, and average separations between the QDs 
for different boundaries with the same period. By setting properly different values of the period, QD displacement 
dispersion, and average QD separation, as well as the QD heights and widths (or face slopes), one can model the 
variation of the horizontal and vertical correlations in the structural parameter of QDs. This model permits one also to 
specify corrugated interfaces on which QDs are arranged as quasi-periodic irregularities.  
 
In order to compute the scattering properties of a rough surface using a forward electromagnetic solver, an ensemble of 
surface realizations must be generated. There exist several ways to generate rough surfaces with Gaussian height or any 
other structural parameter distribution and a given correlation function. The most common approach consists in 
generating surface profiles by a Monte Carlo procedure. A sequence of random numbers (~100,000) with Normal 
statistics, zero mean, and variance σ = 1 is constructed from another random series directly generated by a computer. 
Then the former sequence is scaled in order to obtain a desired σ and, further, correlation with the Gaussian is 
performed in order to obtain a profile with a Gaussian correlation function. This is known as the spectral method [5] and 
used in PCGrate v.6.2. Note also that measurements of scattered light have mostly been obtained at short X-ray 
wavelengths and grazing angles of incidence with a slit-shaped detector. If a two-dimensional surface structure is 
uniform then the one-dimensional PSD of the one-dimensional grating-like structure is suitable to calculate the intensity 
scattered into a slit-shaped detector. For this geometry, the scattering angle changes with the position on the detector slit, 
and one has to integrate the differential reflectivity distribution function over all these positions or spatial frequencies, 
which will result in some smoothing [24].       
 
 

3. APPROXIMATE METHODS FOR ROUGHNESS ACCOUNTING IN X-RAY–VUV RANGES 
 
Scattering from rough surfaces significantly alters the power distribution between the reflected and transmitted specular 
fields and generates additional losses due to absorption within the multilayer film. This is a purely dynamical effect 
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requiring rigorous theory to correctly describe the power change in the specular order and to give the nonspecular 
distribution. The existing theoretical frameworks exploit the fact that interaction between X rays and matter is typically 
weak (“small roughness approximation”) or, alternatively, the surface is very rough whose typical length scales are 
much greater than the wavelength. In the first case, one treats the specular and nonspecular scattering from interfacial 
roughness using first-or, at most, second-order perturbation theory. Hence the theory is limited to the case where the 
nonspecular scattered power is small compared to the incident power. In the second case of the geometrical optics 
approximation (scalar theory), one launches a large number of parallel incident rays on the surface, hence polarization 
and resonance effects in this model are non-accountable. Despite the considerable progress attained in the last decade in 
developing a rigorous theory of X-ray scattering from rough multilayer films, the author is aware only of approximated 
and asymptotic approaches. Even a general second-order theory of scattering from 1-D rough multilayers has not yet 
been developed.  
 
Within the context of the geometrical optics theory (or the high-frequency Kirchhoff integral approximation), each ray 
undergoes a series of reflections off the surface until it finally escapes [25]. A fundamental constraint on the application 
of this approach to bulk and multilayer X-ray structures, as well as to those with one dielectric coating, is imposed by 
the large slopes and oblique angle of incidence, which should not be extremely grazing [10]. The critical value of the 
angle depends, however, on the actual surface parameters and the light wavelength and polarization. The limitation on 
the angle of incidence is connected with the difference in scattering between the finitely and perfectly conducting bulk 
rough structures operating in the X-ray range under grazing incidence, particularly in the case of the TM polarization. 
The same applies to multilayers if the radiation penetrates all the way down to the substrate. 
 
Within the context of perturbation theory, two different formulations are basically used in X-ray–EUV, each valid in its 
specific regime. The Born approximation (BA) is based on iterative solution of a volume integral equation and was first 
applied to homogeneous rough surfaces in the context of X-ray and neutron scattering [25]. BA refers to a family of 
methods in which the unknown field satisfies an integral equation of second kind, with a ‘potential’ term and a Green’s 
function in the integrand. The solution can then formally be expressed as an iteration series (the so-called Born or 
Neumann series) with the potential used as a small parameter [10]. The Born approximation usually corresponds to the 
first iteration. The small parameter of this expansion is typically the electric permittivity contrast, which is very small in 
the X-ray and EUV range. The main weakness of the BA is that it does not take properly into account the refraction by 
the surface and therefore fails as one approaches the so-called critical angle, at which total external reflection occurs. 
The BA can be improved considerably in this respect by choosing a more adapted reference problem, namely, the flat 
surface between two media. In this case, the free-space Green function is replaced by a half-space Green function, that 
depends explicitly on the Fresnel reflection coefficient at the plane interface. This is the so-called distorted-wave Born 
approximation (DWBA), a method which draws, as the BA, from quantum mechanics and was developed in the eighties 
of the last century for X-ray scattering from rough surfaces [25]. 
 
To take border roughness (or diffusion between materials of the layers) into account, we use in PCGrate v.6.1 a model 
based on Debye theory for the Normal law of the micro-roughness and/or interdiffusion height distribution. In this 
model, the effect of imperfect plane boundaries can be incorporated into efficiency calculations by describing the 
reduction of the reflected specular (coherent) amplitude at each boundary by the factor of the Debye-Waller model [26] 
 
      exp(–2(2πσsin(ζ)/λ)2),      (4) 
 
where λ is the wavelength in vacuum and ζ is the grazing angle of incidence on the plane that must be large and far from 
the critical angle. 
 
 
The Nevot-Croce model, which can be derived from the first order DWBA, is used mostly at grazing incidence near the 
critical angle 
 
     exp{–2(2πσl+1/λ)2nl sin(ζl)nl+1sin(ζl+1)},     (5) 
  
where ζl is the grazing angle of incidence and nl  is the refractive index in layer l.  
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Both descriptions of the reduction of specular reflectance are valid, strictly speaking, in the case of small roughness 
heights and big (Eq. 4) or very small (Eq. 5) correlation lengths. It was shown [27] that the correlation function, which 
determines the properties of scattering from shallow microrough surfaces, becomes no longer adequate for description 
of the speckle pattern after the mean height of irregularities h has exceeded one-tenth of the wavelength. The use of Eqs. 
(4)-(5) or even more complicated approximations in the intermediate incident angle range, for high conducting surfaces, 
and especially in the TM polarization is also very questionable. 
 
 

4. TWO RIGOROUS SOLVERS OF PCGRATE V.6.2 
 
PCGrate-S(X) v.6.2 series software enables high-speed calculation of both multilayer resonance and small wavelength-
to-period ratio cases using one of the two independent solvers, i.e. Penetrating and Separating. The solvers operate 
differently and behave in a mutually complementary way when applied to such difficult cases as coated gratings with 
thin layers, rough gratings or mirrors, and photonic crystals. 
 

       
Fig.1. A multi-boundary grating model with plain gaps between two adjacent corrugated regions (left); and a multi-boundary grating 
model which can be calculated with the Penetrating solver only (right). 
 
 
The PCGrate 6.2 Separating solver is based on the newly developed single-boundary integral-equation Scattering solver 
and the Scattering-matrix approach to multilayer diffraction [4, 6-7]. By definition, it requires that a homogeneous 
medium separate two adjacent corrugated regions by fictitious planes (see Fig. 1, left). The distance between such planes 
may be arbitrary, including very nearly zero separation. The Separating solver offers a fast solution to multistack 
problems with plane and/or conformal (obtained by a vertical translation) layers using the same solution of integral 
equations on a single boundary. This grating model may conveniently be illustrated by a profile of an arbitrary outline 
with several absolutely plane interfaces above and/or below it. Since the fields at the adjacent plane interfaces are 
coupled by known Fresnel coefficients, the whole multi-boundary problem can be effectively reduced to solution of 
integral equations on the corrugated boundary profiles only. The Separating solver is primarily intended for efficiency 
calculations for any uncoated, including rough, grating, specific types of coated gratings, and photonic crystals. It is 
indispensable for X-ray–VUV gratings and mirrors covered with one or many plane or rather thick conformal coatings 
and, especially, for grazing incidence structures.  
 
The recently refined PCGrate 6.2 Penetrating solver is based on the multi-boundary marching scheme [11, 15]; it does 
not require separation between two adjacent corrugated regions (see Fig. 1, right).  This is vital for the modeling of 
many coated gratings (echelles, multilayer X-ray-EUV, thin-oxidized, etc.). Therefore, the Penetrating solver is more 
general in this sense. As a rule, the Penetrating solver takes up more computing time than the Separating one to solve 
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such problems, because it considers an absolutely plane border as a corrugated boundary and solves integral equations 
on each physical boundary (it also depends on the number of the +/- terms/orders taken into account).     
 
The PCGrate-SX 6.2 calculation solvers work reliably and very fast for very low λ or λ/d in the X-ray–EUV range, 
despite the small number N of collocation points per wavelength used in the MIM (it is also true for the echelles). For 
example, if a period includes 50 collocation points and λ/d = 0.001, there is only 0.05 point per wavelength. In this case, 
however, the profile depth, the bi-layer thickness, and the incident radiation wavelength must be of the same order of 
magnitude. The same rule for reaching the maximum diffraction efficiency is, on the whole, valid for longer 
wavelengths too. 
 
 

5. EXAMPLES OF EXACT ACCOUNTING OF DIFFERENT-TYPES OF IRREGULARITIES 
 
In this Section, we are going to consider examples of exact accounting of radiation scattering from irregularities of 
various types, more specifically, random roughness of the gold mirror illuminated by hard X-ray radiation at grazing 
angles, random roughness on the boundaries of a 20-bilayer Mo/Si normal-incidence grating operating in the EUV 
range, and quasi-periodic tenfold-multiplied In(Ga)As QD ensembles, with vertical correlation and without it, 
illuminated by X-rays at grazing incidence. These examples were chosen so as to permit us, in addition to checking the 
validity of the method in studies of nano-irregularities of any kind, to treat different wavelength ranges and specific 
conditions of irradiation, as well as perform comparison with approximate models and measurements. The computations 
were carried out with PCGrate-SX v.6.2, and in the cases of exact accounting of irregularities we conducted statistical 
averaging of data with a Gaussian height distribution and different correlation lengths.  
 
5.1 A rough gold mirror 
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Fig. 2. (left) Calculated specular TE reflectance of gold mirror for Cu Kα1 radiation plotted vs. angle of grazing incidence for 
different σ (rms rougness) and L (correlation width): σ = 0 and L = ∞ (long-dashed line – perfect surface); σ =1.5 nm and L = ∞ (long-
two-short-dashed line – Debye-Waller appr.); σ = 1.5 nm and L = 0 (long-short-dashed line – Névot-Croce appr.); σ = 1.5 nm and L = 
5 nm (data markers – rigorous model for different samples). σ = 1.5 nm and L = 5 nm (short-dashed line – rigorous average model for 
10 samples); σ = 1.5 nm and L = 5 nm (solid line – rigorous average model for 15 samples). (right) A border profile sample with a 50-
nm period and 10 random asperities used in rigorous models of gold X-ray mirror.  
 
 
A bulk model of a typical gold X-ray mirror for use at grazing incidence near the angle of total external reflection was 
chosen as a starting point for the investigation. The difference between the two approximate and the rigorous approach 
can be clearly seen in Fig. 3 (left) which plots the calculated specular TE reflectivity of a gold mirror with rms 
roughness σ = 1.5 nm vs. ζ for Cu Kα1 radiation (λ = 0.1541 nm) and for different values of the lateral correlation length 
L. For the Debye-Waller model L = ∞, for the Névot-Croce model L = 0, and for statistical average rigorous 
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calculations, L = 5 nm. Thus the lateral correlation length chosen for the rigorous model is close to the one used with the 
Névot-Croce model. A typical border profile used for modeling of such quasi-gratings, which have an average period of 
50 nm, 10 asperities, and height in the range from 3 nm to 15 nm, is demonstrated in Fig. 2 (right). Thus, the h/λ ratio 
may reach 100, a figure very large for any numerical method.  
 
The results of calculation of the specular scattering component in this unfavorable example start to converge for N > 
1000 for both solvers, and stable results with an accuracy of 1.е-5–1.е-6, as estimated from the energy balance with due 
accounting of finite conductivity of the material, can be obtained for N ~ 2000. The statistical averaging has been 
performed for 10 and 15 samples and the difference between the two data series, as seen from Fig. 2 (left), is about 
several percent. For the sake of simplicity, an equal step between randomized points is used in the calculations, which 
results in a fixed width of asperities; it can be changed, however, by varying the groove period statistically (see Section 
2 about QD structural models). The refractive indices of gold were taken from [28]. 
 
The difference between the rigorously and approximately calculated examples is about an order of magnitude in the low 
reflectance range and about a few times in the intermediate range. In the high reflectance range, as well as for σ = 0.15 
nm and, especially, for σ = 0.015 nm (both data series are not presented), the difference between the rigorous and 
Névot-Croce models is much smaller. As one can readily see from Fig. 2 (left), the rigorously calculated specular 
reflectances lie between the estimates made with the Névot-Croce model and those for a perfect (non-rough) mirror; this 
implies that the Névot-Croce factor overestimates the influence of roughness, and that the roughness values obtained by 
fitting experimental data to the Névot-Croce approximations are too small for grazing angles higher than the critical 
angle. This conclusion can be drawn also from the validity range derived for the Névot-Croce factor and for the first- 
and second-order DWBA theory [25]. 
 
Four complex matrices with total 8,000 unknowns were used in the Separating solver for each random sample of this 
problem. The time required to calculate one specular reflectance for such model (with the energy balance error of 1.e-5) 
was about one hour when using all convergence accelerating options [18] and a workstation with two Intel® Pentium® 
2 GHz processors, 2 Mbyte cache, 400 MHz bus clock, 2 Gbyte RAM and controlled by OS Windows® XP Pro. 
 
5.2  A  rough Mo/Si multilayer grating 

The EUV normal-incidence imaging spectrometer developed for the Hinode, formerly known as Solar B [29], mission is 
an orbital instrument making use of a multilayer diffraction grating, and the Mo/Si coating was chosen and optimized 
for its optics. The toroidal diffraction grating, 100 mm in diameter and with a nominal radius of 1.18 m, having 4200 
grooves/mm and rectangular (trapezoidal) groove profile of nominal depth 58 Å, was fabricated holographically by 
Zeiss Laser Optics GmbH, with subsequent ion etching of the fused silica substrate [15]. Different Mo/Si coatings, 
optimized for operation in two narrow EUV wave bands  (17–21 and 25–29 nm) containing many emission spectral 
lines were deposited onto the two halves of the grating. 
 
The measurements of the flight FL1 grating were performed at the Naval Research Laboratory synchrotron beamline 
[15]. The efficiency was measured at 60 points of a square grid covering both parts of the working grating surface 90 
mm in diameter. The efficiencies of the multilayer diffraction grating were measured at nine wavelengths with the 
radiation incident at an angle of 6.5° to the normal on the short-band side (from 17.1 to 22.0 nm) of the grating. Except 
for several extreme points at the edges of the working aperture, the efficiency was found to be quite uniform over the 
grating surface. The efficiencies of the FL1 grating measured at the central point of its short-wavelength side 
(gravitation center) are identified by markers in Fig. 3 (left).  
 
The theoretical diffraction efficiency was determined for unpolarized incidence radiation using the Penetrating solver 
and border randomizing procedure. For the short-band half of the diffraction grating, the multilayer stack parameters are 
20 Mo/Si layer pairs with a bilayer period D = 10.3 nm and a Mo thickness-to-bilayer-period ratio Γ = 0.37, 0.2 nm Si-
Mo interface rms roughness, and 0.85 nm Mo-Si rms roughness. The Si protective capping layer is 2 nm thick. The 
AFM-measured groove profile has the trapezoidal shape with a depth of ~6 nm and the slope angle of ~35°. The 
boundary profile was assumed the same for all layers and 98 random asperities on each border were generated without a 
vertical correlation between borders and using the lateral correlation length L = 2.4 nm. The modeling was carried out 
using the refractive index data for Si and Mo taken from different sources [15]. There were no free parameters in the 
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calculation. The calculations show that only one set of 41 random borders is enough for the accurate averaging of the 
efficiency. A sketch of the FL1 multilayer grating is shown in Fig. 3 (right).  
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Figure 3. (left) Calculated and measured non-polarized efficiencies in plus and minus orders of the Hinode flight 4200 grooves/mm 
grating with 20 Mo/Si bilayers on Si and interface rms roughnesses of 0.2 nm (Si-Mo) & 0.85 nm (Mo-Si) operating at an angle of 
incidence of 6.5º vs. wavelength. (right) A sketch of the FL1 rough multilayer grating with a lateral correlation length L of 2.4 nm. 
 
 
Figure 3 (left) indicates good agreement between the measured and rigorously calculated diffraction efficiencies of the 
FL1 grating in the ±1, 0, -3, and -5 orders over the entire working wavelength range. The product of the multilayer 
mirror reflectance reduced by the Debye-Waller factor by the grating relative efficiency, which was used in the 
approximate model to account for the layer interdiffusion and random microroughness [15], is shown for comparison in 
the same figure. As was discovered and described by Seely et al. [30], while the physical model based on accounting of 
the Debye-Waller factor does not yield wavelength separation of the inside and outside orders, this model is capable of 
accurately predicting for this particular groove profile the shape of the efficiency curves and the heights of their 
maxima. The above model based on rigorous accounting of random border roughness not only yields separation of 
efficiency curves in the plus and minus orders in wavelength but predicts also exactly the absolute efficiencies reduced 
as a result of scattering from asperities. Because the heights of the maxima and the shapes of the efficiency curves for 
different orders are similar (but do not coincide!) for the rigorous and the approximate models, the effect of roughness 
on the decrease of specular reflectance from a plane multilayer mirror for a mean-height roughness/wavelength ratio less 
than ~0.1 and close to normal incidence can be determined by approximate techniques involving, for instance, the 
accounting of the Debye-Waller correction, which conforms with the estimate made for the visible and IR ranges [27]. 
 
The time required to calculate one point using a randomly-rough 41-border rigorous model for the FL1 grating (with the 
energy balance error of ~1.e-3) was about 7 min when using the above mentioned workstation and without using 
convergence accelerating options.  
 
5.3 Multiple quantum dot ensembles 

Two samples were grown by molecular beam epitaxy. Both of them consisted of 10 InAs QD sheets (two mono layers 
of InAs were deposited on each QD layer) separated by 10 nm and 40 nm of GaAs, thus providing vertically correlated 
and non-correlated QD arrays. In the former case (10 nm), the dots were perfectly aligned vertically (which is confirmed 
by transmission electron microscopy), in the later case they were arranged more or less randomly.  
 
Measurements were performed on the samples using the grazing incidence X-ray diffraction techniques at a wavelength 
of Cu Kα1 with a Hotbird diffractometer and a position sensitive detector [31]. The beam divergence was 0.01º and an 
angular resolution of 0.005º was chosen. By comparing the theoretical with experimental X-ray reflectances (Fig. 4, 
left), the average values of h = 5.0 nm and L = 16.7 nm determined in the Stranski-Krastanow growth model [22], as 
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well as the superlattice parameters, were substantiated and refined by the fitting procedure for two different samples in 
the range near the critical angle.  
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Figure 4. (left) Specular reflectance for a sample with vertically non-correlated QDs operated at 0.154-nm wavelength vs. grazing 
angle of incidence: perfect plane structure model (short-dashed line); Névot-Croce approximation with rms roughness of 1.45 nm for 
triangles (long-dashed line); rigorous calculation with QD height h = 5 nm and width L = 16.7 nm (solid line); measurement (long-
short-dashed line). (right) Absolute error for energy balance (solid curve) and specular reflectance (short-dashed line) for a sample 
with vertically non-correlated QDs operated at 0.154-nm wavelength and 0.5º grazing incidence vs. number of collocation points 
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Figure 5. (left) Specular and non-specular reflectance of a statistical realization calculated with different numbers of collocation 
points N for a sample with vertically non-correlated QDs, 0.154-nm wavelength, and 0.5º grazing incidence vs. grazing diffraction 
angle (order number) in the range from -4.3º to +0.5º. (right) Specular and non-specular reflectance of an average sample with 
vertically non-correlated QDs calculated for 0.154-nm wavelength and 0.5º grazing incidence vs. grazing diffraction angle (order 
number) in the range from -4.3º to +0.5º. The strong diffuse peak is near the grazing diffraction angle of 61.5º (-172 order).  
 
 
Both specular and nonspecular scattered intensities were theoretically determined for TE-polarized incident radiation 
using the Penetrating solver and the border randomizing procedure. The refractive indices for InAs and GaAs were 
taken from [28]. The convergence of the method is illustrated by a statistical realization of the geometrical parameters of 
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borders with vertically uncorrelated QDs and ζ = 0.5º visualized in Fig. 4 (right), which plots the absolute errors of the 
energy balance and specular reflectance vs. N. The graphs were drawn in the log scale; for the exact value of the 
reflectance was taken its iterated value, the last on the axis in Fig. 4 (right). We readily see that both curves are nearly 
linear and close to one another, which implies a high convergence of the results and error scalability. The grazing angle 
of incidence of 0.5º is a difficult angle from the standpoint of attaining convergence and a high accuracy of results, 
because it is larger than the total external reflection angle while approaching it, and the attendant multiple and multi-
wave scattering effects influence strongly the speckle intensity distribution. Figure 5 (left) demonstrates the convergence 
of the calculation of the diffuse scattering component as a function of N. As expected, the convergence of the 
calculations of nonspecular scattering intensity is much worse than that for the specular case. Nevertheless, the general 
trend is obvious in Fig. 5 (left), and reliable results can be reached by choosing large enough N and the required 
statistical averaging. 
 
Calculations have revealed a weaker dependence of specular scattered intensities on L and a stronger one on h, a feature 
that is especially noticeable at high grazing angles. Also, noticeable differences appearing at these angles between the 
approximate (Névot-Croce model) and the rigorous methods, on the one hand, and the theory and experiment, on the 
other, find an adequate explanation. The angular dependences of diffuse scattering intensity exhibit very strong peaks 
near the angles ζdiff to the surface corresponding to specular reflection from the QD facets (Fig. 5, right), the so-called 
blaze condition for gratings: 
 

2α = ζdiff − ζinc.       (6) 
 
where α is the facet angle of QDs (tan α = 2h/L). The good agreement between the results obtained from the blaze 
equation and those derived numerically suggests the validity of our computations and substantiates the possibility of 
extracting the QD slope angles from measurements of X-ray diffuse scattering. These peaks exist at nearly the same 
diffraction angles for QDs with the same slope angle; their intensities, however, may differ by many times for the 
correlated and non-correlated QD structures having the equal QD density. Such determination of the QD slope angle and 
of the vertical correlation rate, as well as of other structural parameters, can be performed with a high accuracy, 
provided the data sample to be averaged is statistically large enough. In this case, the statistical averaging was 
performed only for 5 and 10 generally random samples; we readily see, however, that the averaged data series do 
converge, in particular for even orders. This attests to the proposed approach being promising. 
 
The time required to calculate one reflectance for all scattering angles for a 21-border QD structure (with the energy 
balance error of ~1.e-5) was about 3.5 hours when using the above mentioned workstation and all the convergence 
accelerating options. 
 
 

6. CONCLUSIONS 
 
To sum up, we are formulating now the most essential conclusions of the present study and suggest possible related 
directions to be pursued. 
 
The rigorous accounting of random, periodical and quasi-periodical asperities of multilayer 1-D structures with any 
(Gaussian and non-Gaussian) surface statistics has been used for the first time, including calculations of diffuse X-ray 
scattering.   
 
Examples of exact calculations of scattered intensities for mirrors, gratings and quasi-periodical structures like multiple 
QDs are presented in the wavelength range from X-ray to EUV. The convergence and accuracy of the data obtained has 
been estimated. The results are compared with the data obtained by the known approximation methods and derived from 
measurements.  
 
The diffracted speckle pattern obtained in the X-ray–EUV range for any kind of structures having high asperities can 
differ from those calculated for ideal or AFM-measured average profiles (without randomization) or derived from 
approximations by a few percent up to orders of magnitude. Mean intensities can be obtained by averaging intensities of 
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a few or of a large number of statistical samples; it depends on both the structural parameters of the samples with 
irregularities and on the parameters of the incident radiation. For incidence, for a gold mirror with random roughness the 
Névot-Croce approximation yields underestimated specular reflectances for grazing angles larger than 0.5º. For a 
grazing angle of 1º, the approximate value is one tenth of the result obtained by averaging only 15 exactly calculated 
statistical data. For multilayer structures the situation becomes still more complex, and one will have to drive estimates 
from rigorous calculations and statistically reliable averaging. 
 
Quantitative determination of the specular and, particularly, of nonspecular components of short-wavelength radiation 
scattered by asperities of multilayer structures under nearly normal incidence requires invoking rigorous numerical 
methods in the cases where the ratio of the mean asperity height to the wavelength is >̃ 0.1, which coincides with the 
criterion found for long-wavelength radiation and one perfectly conducting boundary [27]. As the incidence angle 
increases, this ratio grows to a few orders of magnitude for strongly grazing angles; it cannot be found, however, by any 
way other than a comparison of approximate results with accurate data or measurements. Randomly rough borders 
should be included in rigorous efficiency calculations by way of numerical randomization, if the statistics is known, or 
from a set of data samples obtained, for example, from AFM measurements. 
 
The proposed approach to numerical treatment of X-ray diffraction from low-dimensional structures like multiple QDs 
permits one not only determine the specular and the diffuse reflectance component but to derive structural parameters of 
samples as well by fitting the experimental to theoretical scattering intensities. A theoretical study has revealed that the 
angular spectrum of scattering from QD ensembles should contain a resonance corresponding to specular reflection from 
QD faces, a point that requires experimental verification. The position of the resonance should yield the lateral width (or 
slope) of the QDs with a high accuracy, and its height taking into account a 2-D nature of QD structures, the degree of 
their vertical correlation. 
 
The Separating solver based on the rigorous MIM and scattering matrix approach is added to the improved Penetrating 
solver of PCGrate-SX v.6.2 to expand the range of solvable problems and to speed up by orders of magnitude the 
cumbersome computations similar to those presented in this report. Despite the Moor’s law and the remarkable progress 
reached in computer technologies, the problems involved are among the most difficult ones encountered in numerical 
computational applications, both because of a very poor convergence of rigorous methods employed in short-
wavelength (high frequency) problems and as a result of their being of a purely statistical nature. Both these reasons 
stress the need for further refinement of the rigorous methods and the corresponding programs and carrying out time-
consuming computations.  
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