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The author presents a general formula derived from 
the earlier developed boundary integral equation 
theory, which is important for absorption calcula­
tions of multi-boundary gratings in conical diffrac­
tion. Examples of absorption computations of a pho­
tonic crystal supporting polariton-plasmon excita­
tion and an x-ray-grazing-incidence multilayer grat­
ing are considered. The formula tested has been 
found universal and accurate for analyzing various 
in-plane and off-plane diffraction grating problems. 

1 INTRODUCTION 

The boundary integral equation method is 
presently universally recognized as one of the most 
developed and flexible approaches to accurate nu­
merical solution of diffraction grating problems. 
Viewed in the historical context, this method was 
the first to offer a solution to vector problems of 
light diffraction by optical gratings with a high 
enough accuracy and to demonstrate remarkable 
agreement with experimental data. In many cases 
it offers the only possible way to followup in re­
search. This should be attributed to the high ac­
curacy and good convergence of the method, espe­
cially for the TM polarization plane. 

The electromagnetic formulation of conical 
diffraction by gratings reduces Maxwell equations 
to a system of two Helmholtz equations in �2, 
which are coupled by transmission conditions at 
interfaces between different materials and a sub­
ject to radiation conditions in the upper and lower 
mediums. The integral equations obtained using 
boundary integrals of the single and double layer 
potentials including the tangential derivative of sin­
gle layer potentials interpreted as singular integrals 
can be found elsewhere [1]. In the case of clas­
sical diffraction, when the incident wave vector is 
orthogonal to the groove (z-) direction, the system 
degenerates to independent transmission problems 
for the two basic polarizations of the incident wave, 
whereas for the case of conical diffraction (Fig. 1) 
the boundary values of the z-components as well as 

their normal and tangential derivatives at the in­
terface are coupled. The boundary profiles of the 
layers can be separated, i.e., the maximal y value 
of a given profile is strictly less than the minimal 
y value of the next profile above (Fig. 2) or, vise 
versa, penetrating (Fig. 3) . 

One of the most important accuracy criteria 
based on a single computation is the energy bal­
ance that can be generalized in the lossy case. In 
this paper we provide an important formula for 
the direct calculation of the absorption of multi­
boundary gratings in general conical mounts. Be­
sides, a couple of numerical examples of absorption 
calculus are presented for well known optical ap­
plications of gratings. More specifically, they are: 
anomalously absorbing photonic band gaps (PBGs) 
with metallic nanorods illuminated at normal inci­
dence in the visible-infrared range and blazed mul­
tilayer gratings working in grazing conical diffrac­
tion in the x-ray range. 

2 DIFFRACTION PROBLEM 

Figure 1: Schematic conical diffraction by a 
grating. 

In the multi-boundary diffraction problem one 
has to deal with cylindrical surfaces �n x �, n = 

0, ... , N - 1, either open or closed, which are d­
periodic in x and whose generatrices are parallel to 
the z-axis (Fig. 2) . The surfaces separate N + 1 
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Figure 2: Schematic cross section of a grating 
with separated boundaries. 

Figure 3: Schematic cross section of a grating 
with penetrating boundaries. 

periodic regions Gn x JR., filled with material of 
constant permittivity and permeability. The grat­
ing structure is characterized by piecewise constant 
functions of electric permittivity C and magnetic 
permeability fL, which are d-periodic in x, homo­
geneous in z, and have jumps at the surfaces L:n. 
The values of these functions in the semi-infinite 
regions Go x JR. above and G N X JR. below the in­
homogeneous structure are denoted by co, fLo and 
CN, fLN, respectively. We assume that A = 27rc/w 
with a light velocity c at a given pulsatance wand 
the incident time-harmonic field with polarization 
vectors p and s defined later is given by 

(a, -(3,,) = WJcofLo(sin e cos ¢, - cos e cos ¢, sin ¢) ,  
and lel, I¢1 <7r/2. 

Due to the periodicity of the surfaces the inci­
dent wave is scattered into a finite number of plane 
waves in Go x JR. and also in GN x JR. if CNfLN > 0. 
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The wave vectors of these outgoing orders lie on 
the surface of a cone whose axis is parallel to the 
z-axis. Therefore one speaks of conical diffrac­
tion. Classical diffraction corresponds to , = 0, 
whereas, -=I=- ° characterizes conical diffraction. Us­
ing the representation of the total field E(x, y, z) = 

E(x,y)ehz, H(x,y,z) = JcO/fLoB(x,y)ehz the 
system of time-harmonic Maxwell equations trans­
forms to 2D Helmholtz equations in the domains 
Gn, where C and fL are constant, 

with the coefficient function (WI\;)2 = W2cfL _ ,2 
piecewise constant and d-periodic in x. 

It can be shown that under the condition 
I\; -=I=- 0, which will be assumed throughout, the 
z-components Ez, Bz of the vector functions E and 
B determine the total electromagnetic field (E, H) . 
The continuity of the tangential components of E 
and H on the surface L:n implies jump conditions 
for Ez, Bz in the form 

where [ . ]  denotes the jump of functions on L:n, and 
8v = vx8x + vy8y and 8t = -vy8x + vx8y are the 
normal and tangential derivatives on L:n, respec­
tively. The z-components of the incoming field 

E�(x, y) = Pz ei(ax�f3Y), 

B!(x, y) = Sz ei(ax�f3y) J fLO/CO = qz ei(ax�f3y) 

are a-quasiperiodic in x of period d. Here the vector 
s is orthogonal to the plane spanned by k and the 
grating normal v = (0, 1, 0) and p lies in that plane: 

s = k x (0, 1, 0) / lk x (0, 1, 0) 1, p = s x k/lkl. 

If k = (0, -k, 0) , we set s = (0, 0, 1) and hence 
p = (1, 0, 0) . Then, the incident plane wave is given 
by its polarization angles 

c5 = arctan[I(Ei, s) I/I(Ei, p) l], 

1j; = - arg[(Ei, s) / (Ei, p) ], 

where c5 E [0, 7r/2], 1j; E (-7r, 7r]. 
We seek a bounded H1-regular solution (Ez, Bz) 

which is a-quasi-periodic in x (u(x + d),y) = 
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eiad u ( x, y)) and satisfies the radiation conditions 

(Ez,Bz) = (E!,B�) + L(E[;"B[;,)ei(amx+f3;;'Y) 
mEL 

for y ::::: sup I:o, 

(E B) = '" (Em Bm) e i(amx-f3'NY) z, z 6 N, N 
mEL 

(3) 

am = a + 27rm/d, ,8: = VW2EnJLn _,2 - a� with 
° -:: arg,8: < 7r. In the following it is always as­
sumed that besides EO, JLo > ° 

0 -:: arg E, arg JL -:: 7r, arg (EJL) < 27r , 

which holds for all existing optical (meta) materials 
[4]. Then the electromagnetic formulation of coni­
cal diffraction on multi-boundary gratings is equiv­
alent to (1) -(3) for (Ez, Bz)' 

To solve the multi-boundary integral equations 
we use the effective recursive algorithms [2, 3]. 
For profiles which are separated by horizontal lines 
(Fig. 2) or penetrating (Fig. 3) we use the Sepa­
rating or Penetrating solvers, respectively, i.e. a 
consecutive solution of one-profile problems. The 
choice of a numerical method to solve the multi­
boundary integral equations is such that not even 
necessary to use the same method for every bound­
ary provided that adjacent boundary solvers have a 
common data interface. The equivalence of the sys­
tem to the differential formulation of conical diffrac­
tion has been shown in [4]. Moreover, the existence 
and uniqueness of solutions (Fredholm property of 
respective operators) in appropriate function spaces 
ensure the convergence of numerical methods. 

3 ENERGY CONSERVATION CRITERIA 
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or transmitted orders 

If the multi-boundary grating is perfectly con­
ducting, 1m VN = 00, and there is no any en­
ergy absorption in the grating layers, 1m Vj = 0, 
j = 1, ... , N - 1, then the energy conservation law 
is expressed by the standard energy criterion under 
unitary normalization conditions 

R=l. 

If the grating is lossless, 1m Vj = 0, j = 0, ... , N , 
then the energy conservation law is expressed by a 
similar energy criterion 

R + T=l. 

If 1m Vj > ° for any j = 1, ... , N, then there is 
some energy absorption in grating layers or/and in 
the substrate. Thus the usual law of the energy con­
servation, the sum of efficiencies of all reflected and 
transmitted orders should be equal to the power of 
the incident wave, does not hold. In a general case, 

A + R + T  = 1, (4) 

where A is called the absorption coefficient or sim­
ply the absorption in the given diffraction prob­
lem. This requirement is a convenient single com­
putation tool to check the quality of the numerical 
solution [3]. Besides being physically meaningful, 
expression (4) is very useful as one of numerical ac­
curacy tests for computational codes and especially 
important for x-ray-EUV gratings, photonic crys­
tals, metamaterials, and perfect absorbers where 
absorption plays a predominant role. In the lossy 
case, one needs an independently calculated quan­
tity A to verify Eq. (4) . For such a quantity, we use 
the absorption integrals derived below. 

Diffraction efficiencies or far field patterns for the 
reflected and transmitted fields can easily be found 
from the corresponding boundary values. The effi­
ciency of a diffracted order represents the propor­
tion of power radiated in each order. Defining the 4 

power as the flux of the Pointing vector modulus 
ISinel = Re (Ei x Hi)/2  (X denotes the complex 
conjugate of X) through a normalized rectangle 
parallel to the (x, z) -plane, the ratio of the power 

ENERGY ABSORPTION INTEGRALS 

Because of the problem being invariant under trans­
lation by an integer number of periods along the 
axis perpendicular to the grooves, one may restrict 
oneself to an analysis of the heat power loss A per 
grating period. A can be calculated as a difference 
between the energy fluxes that have crossed the up­
per, fo (f n denotes one period of I:n ) , and the 
lower, fN-1, boundaries of the multilayer structure 
through a periodic cell n bounded by the x = 0, 

of reflected or transmitted propagating orders and 
of the incident wave gives the sum of diffraction 
efficiencies of reflected orders 
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x = d, Z = 0, Z = 1, and y = ±D/2 planes, which 
contains fo and fN-1 (Fig. 3) : 

A = 
r1 dz r Sonods 

Jo Jro 
- r1 dz r SN_lnN-1ds, (5) 

Jo JrN_1 
where So and SN_l are time-averaged complex 
Poynting vectors calculated at the upper and lower 
boundaries, no and nN-l are unit vectors of the 
normal, which are interior to the regions under 
study, and arc length integration is performed along 
the cut of the boundaries by the z = 0 plane. 

The expression of the conservation of energy can 
be derived from a variational equality for Ez and Bz 
in n. Suppose that Ez, Bz are a solution of the par­
tial differential formulation of conical diffraction, 
Eqs. (1), (2), and (3) , we multiply Eqs. (1) respec­
tively with 

E -
--2 Ez and EO"" 

and apply the second Green's formula in the sub­
domains n n GO,N' Then by using the quasiperi­
odicity of Ez, Bz, jump relations (2), and outgoing 
wave conditions (3) one derives the expression for 
the absorption Arn_1 under any boundary f n-l [1] 

Note that En-l and J-ln-l are positive, and 
1m En -=I=- 0 or 1m J-ln -=I=- O. Taking into account (5) 
and (6) we obtain the energy absorption formula 
for absorbing multi-boundary gratings in conical 
diffraction: 
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In the case ¢ = 0 this formula provides the 
expression of the heat absorption energy for 
in-plane (classical) diffraction derived in [5]. In 
terms of the solution w, T of the integral equations 
[1] the absorption energy (7) can be given by the 
boundary single-layer potentials Vn-, double-layer 
potentials L;;, singular operators J;; of tangential 
derivatives of single-layer potentials, and the 
unitary operator I 

5 EXAMPLES OF ABSORPTION CALCULUS 

The numerical implementation approach expedi­
ent for the calculation of far-fields and polarization 
properties of conical diffraction by gratings was de­
scribed in Refs. [1, 2, 6]. Here we present a few nu­
merical experiments taken from important applica­
tions of absorption gratings. The presented results 
demonstrate the impact of absorption on diffraction 
in PBGs and x-ray multilayer gratings. 

5.1 PEG with Au rectangular nanorods 

In this Subsection, we are going to analyze 
numerically the absorption of photonic crystal 
slabs supporting polariton-plasmon excitation with 
nanowires invariant with respect to the z axis. 
Though surface plasmon exitation plays a predom­
inant part in metallic PBGs, other types of electro­
magnetic resonances can also exist in complex ma­
terial structures: Rayleigh anomalies, Fabry-Perot 
and Bragg resonances, waveguiding anomalies, etc. 
The vital role of the absorption of PBGs and meta­
materials in the visible and near infrared regions is 
well known. In conical diffraction the influence of 
possible types of waves can be mixed [2]. 

The grating model contains closed boundaries 
(inclusions) of a simple cross section embedded in 
a homogeneous medium with dielectric permittiv­
ity El and magnetic susceptibility J-ll. We are going 
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to deal here only with materials with JLn = 1, al­
though the model is applicable to other cases as 
well, including metamaterials [2]. The dependence 
of the dielectric permittivity C2 of the material of 
nanorods on the incident photon frequency is as­
sumed to be known. The lower medium and the 
upper one are likewise assigned pairs of material 
constants, but one may conceive of more compli­
cated cases of multilayer structures as well. The 
model allows also arbitrary incidence of, in the gen­
eral case, elliptically polarized radiation on PBGs, 
which is prescribed by two angles of incidence and 
two angles of polarization. 

c: 
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Figure 4: Absorption of a grating with Au 
rectangular nanorods embedded in a dielectric 
medium vs wavelength. 

Figure 4 displays for comparison theoretical 
spectra of energy absorbed by a PBG with Au 
nanowires of the rectangular cross section of the 
area of 15 x 50 nm2 studied in the 400-800-nm 
range (visible and near-infrared) . In this example 
we consider the TM-polarized light (the plane of 
polarization is perpendicular to the lines) normally 
falling on Au nanowires with d = 200 nm embedded 
in a dielectric matrix with Cl = 2.25 and refractive 
indices of Au taken from [7]. The orientation of 
the rods is chosen in such a way that light nor­
mally falls on a long side of a rod. The absorption 
spectra of the PBG were calculated by two different 
boundary integral equation codes based on the Sep­
arating solvers [2, 6]: ( i) using direct calculations 
of absorption integrals by Eq. (7) and ( ii) using the 
usual indirect approach by Eq. (4) . For the method 
( i) we use the electromagnetic field calculated by 
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Raleigh expansions similar to those of Eqs. (3) . It is 
worth note, the number of accounting propagating 
and evanescent orders, which are computed with 
desired accuracy, should be enough. The rule to 
find this number while is not clear mathematically, 
so it should be optimized numerically. For this ex­
ample we take into account one propagating and 
four evanescent orders. As seen from Fig. 4, ab­
sorption spectra exhibit a small difference, about 
a few percent, in the vicinity of and, particularly, 
around the plasmon-polariton anomaly. Thus, ex­
amining the two curves, we see a good agreement, 
which evidences applicability of both numerical ap­
proaches to analysis of absorption of such PBGs. 

A small number of collocation points (N = 100) 
were used to compute these examples which allo­
cate rv 0.5 MB of RAM. The relative error cal­
culated from the energy balance using the absorp­
tion integrals of Eq. (7) is rv 10-3. The average 
time taken up by one point on a portable work­
station IBM® ThinkPad® R50p with an Intel® 
Pentium® M 1.7 GHz processor and 2 GB of RAM 
is rv 1 sec when operating on Windows® XP Pro . 

5.2 X-ray multilayer grating 

Multilayer coated blazed gratings with high groove 
density are the best candidates for use in high res­
olution EUV and x-ray spectroscopy. Theoretical 
and experimental analysis show that such a grating 
can be potentially optimized for high dispersion and 
spectral resolution in a desired high diffraction or­
der without significant loss of diffraction efficiency. 
In order to realize this potential, the grating should 
have a perfect triangular groove profile and its ab­
sorption should be minimized [8]. The grazing­
incidence conical-diffraction mounting in which the 
direction of incident light is confined to a plane par­
allel to the direction of the grooves has the unique 
property of maintaining high and sustained diffrac­
tion efficiency due to an additional angular param­
eter. In this Subsection, we analyze the optical ab­
sorption of a blazed multilayer grating working in 
grazing conical diffraction in the soft x-ray range. 

In Fig. 5 the absorption of the 10000 jmm blazed 
Si grating coated with 60 bi-layers ofW jB4C is cal­
culated for the TE polarized (6 = 90° ) incidence ra­
diation with A = 1.3 nm and e = 6° as a function of 
the azimuthal angle. The grating has a triangular 
groove profile with the blaze angle of 6° and an­
tiblaze angle of 64.53° and a conformal multilayer 
coating with the thicknesses of W and B4C layers, 
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Figure 5: Absorption of W /B4C multilayer 
structures working in a conical mount vs inci­
dence angle of x-ray radiation. 

0.6006 nm and 2.4024 nm, respectively. The re­
fractive indices of Si, W, and B4C were taken from 
[9]. Figure 5 displays for comparison theoretical 
absorption spectra of a Si mirror coated with the 
same multilayer and working in the same mount. 
As one can see in Fig. 5, for the defined polar angle 
the grating and mirror absorptions are close in the 
azimuthal angle range investigated. The grating 
absorption minima less than 70% can be obtained 
for the azimuthal angle of rv 77.20. Thus, almost 
the all reflected energy can be directed into diffrac­
tion orders without additional losses for the grating 
absorption. 

Only N = 400 were used to compute this grating 
example which allocates rv 60 MB of RAM. The 
relative error calculated from the energy balance 
using Eq. (7) is rv 10-4. The average time taken 
up by one point on the same laptop is rv 1.5 hour 
when operating on Linux (kernel 2.6.17).  

6 CONCLUSION 

The author presents the expressions derived from 
the developed boundary integral equation theory, 
which are important for calculations of the absorp­
tion of general multi-boundary gratings working in 
conical diffraction mounts. The boundary absorp­
tion integrals developed and tested has been found 
as an accurate and universal tool for calculations 
of the energy balance of various periodical struc­
tures having separated or penetrating boundaries. 
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The results of absorption calculus of the PBG sup­
porting polariton-plasmon excitation in the visible­
near-infrared and x-ray-grazing-conical-diffraction 
multilayer grating have been demonstrated. 
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