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The conical-boundary-integral-equation method has been proposed for calculation of the sensitive optical
response of two-dimensional photonic band gaps (PBGs), including dielectric, absorbing, and high-conductive
rods of various shapes working in any wavelength range. It is possible to determine the diffracted field by
computing the scattering matrices separately for any grating boundary profile. The computation of the matrices
is based on the solution of a 2 × 2 system of singular integral equations at each interface between two different
materials. The advantage of our integral formulation is that the discretization of the integral equation system and
the factorization of the discrete matrices, which takes the majority of the computing time, are carried out only
once for a boundary. It turns out that a small number of collocation points per boundary combined with a high
convergence rate can provide an adequate description of the dependence on diffracted energy of very different
PBGs illuminated at arbitrary incident and polarization angles. The numerical results presented describe the
significant impact of rod shape on diffraction in PBGs supporting polariton-plasmon excitation, particularly in
the vicinity of resonances and at high filling ratios. The diffracted energy response calculated vs the array cell
geometry parameters was found to vary from a few up to a few hundred percent. The influence of other types of
anomalies (i.e., waveguide anomalies, cavity modes, Fabry-Perot and Bragg resonances, Rayleigh orders, etc.),
conductivity, and polarization states on the optical response is demonstrated.
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I. INTRODUCTION

In the past two decades, we have been witnessing expo-
nentially growing interest, of both theoreticians and experi-
menters, in the properties of photonic band gaps (PBGs) and
metamaterials. Progress in the technology of nanostructures
with a characteristic surface relief size of the order of
10–100 nm has stimulated production of two- and three-
dimensional (2D and 3D) periodic structures with periods
shorter than the wavelength λ of visible light, i.e., sub-
wavelength diffraction gratings. Nowadays considerable effort
is devoted to the investigation of polariton-plasmon PBGs
with metallic or semiconducting nanostructures supporting
strong light-matter interaction. Large PBGs, extraordinary
light transmission properties, negative refraction, and strong
coupling between electronic and photonic resonances can
be supported in such structures. Though surface plasmon
excitation plays a predominant part in metallic subwavelength
PBGs, other types of electromagnetic resonances can also exist
in complex material structures working in different wavelength
ranges: Rayleigh anomalies, Fabry-Perot and Bragg reso-
nances, waveguiding anomalies, cavity modes, etc. In some
cases it is difficult to distinguish among these phenomena,
owing to their gradual mutation from one into another, and
determine which is which, even using electromagnetic field
map distributions inside the slab structure. There is therefore

*lig@pcgrate.com; also at I.I.G., Inc., P.O. Box 131611, Staten
Island, New York 10313, USA.

a growing need for methods based on a rigorous theory which
would be universal, accurate, and fast enough.

Numerical methods are ordinarily employed in treating
diffracting structures whose characteristic dimensions [more
specifically, period d, slab (rod) width l, depth h, correlation
length, etc.] are comparable with the wavelength of the
incident radiation (λ/d ∼ 1), i.e., in the resonance region.
Structures with subwavelength dimensions require solution of
the problem in terms of electromagnetic theory, in other words,
of Maxwell’s equations with rigorous boundary conditions and
radiation conditions [1]. A wide range of various techniques
that have been developed for the analysis of some kinds of
gratings may also be used for PBG analysis [2]. Theory offers
presently rigorous numerical methods to solve problems of
diffraction from multiboundary one-dimensional (1D) and 2D
gratings with arbitrary groove profiles, which can conveniently
be assigned to two branches, integral or differential, of
electromagnetic theory. The first of these includes, again, by
convention only, methods involving finite elements (including
boundary or volume, time, or frequency domain), fictitious
sources, and integral equations (boundary or volume). Some
methods closely resembling the differential approach, among
them the modal (sometimes referred to as characteristic-
wave or characteristic-modal) method, coupled-wave (Fourier-
modal) method, and method of coordinate transformation, are
classified by some researchers among a special group [3,4].
They are all based essentially on Maxwell’s equations in
partial derivatives. In the general case, differential theory
typically includes integration of these equations over one
or two coordinates. Most of the currently used differential
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methods resort to 1D integration or some other numerical
approach in solving a system of conventional differential
equations. The method of boundary integral equations (briefly,
IM) treats Maxwell’s equations in the integrodifferential
form, with their subsequent numerical solution by curvilinear
integration. Some versions of the finite-element method can
also be assigned to the integral theory. In contrast to the
method of integral equations, this approach assumes, as a
rule, 2D integration, the only exclusion being the method of
boundary integral elements. Drawing basically close to the
method of integral equations is that of fictitious sources [2].
For a comprehensive review of a large number of theoretical
treatments and their mathematical realizations, the reader is
referred to the above-mentioned books and references therein.

The approach most frequently followed when considering
scattering from ordered or partially ordered objects like
PBGs is the straightforward and readily tractable plane-wave
expansion method [5]. Although a plethora of more or less
universal and effective rigorous analyses exists, this is a good
introduction to the business of band diagrams and is probably
the easiest method to understand [6]. It is well known that this
method suffers from poor convergence for metallic gratings
and needs large computation times, especially for transverse
magnetic (TM)–polarized incident light, because of its main
accuracy parameter scaling cubically with time [7,8]. In the
theoretical investigations applied to diffraction gratings this
approach is well known as the rigorous coupled-wave analysis
(CWA). We dwell on it in some detail to be able to compare
its advantages and shortcomings with the IM employed
by the present authors in treating PBGs and other grating
problems.

In many problems of diffraction monochromatic light is
used and analysis of these problems requires solution of the
scalar or vector Helmholtz equation (in its wave form). If we
restrict ourselves to consideration of periodic objects only,
for example, to 1D or 2D diffraction gratings and 2D or 3D
photonic crystals, the CWA will turn out to be particularly
appropriate for operation with the Helmholtz equation. The
first to apply it, albeit not in a rigorous formulation, to analysis
of volume holograms was Kogelnik, as far back as 1969.
M. Moharam and T. Gaylord applied the coupled-wave method
to analysis of diffraction gratings in its rigorous formulation,
at any rate, to gratings with a lamellar (rectangular) profile in
1981 [9]. The CWA treats the electromagnetic field u(x,y) in
homogeneous regions of space, in front of a periodic object and
behind it, as being comprised of a linear combination of plane
waves. For a nonperiodic confined object, one has to accept,
in place of a linear combination of plane waves, a continuous
expansion in plane waves in the form of the Fourier integral.
In the region of the object, Maxwell’s equations are solved by
Fourier transformation. To find the unknown coefficients in
the Fourier expansions, a system of linear algebraic equations
is formulated. Application of the CWA to classical 2D
diffraction problems with 1D-periodic boundaries, i.e., with a
stepwise changing dielectric and/or magnetic permeability at
the boundary, is essentially different for the transverse electric
(TE) and TM cases (with the electric vector either confined to
the plane perpendicular to the plane of the incident wave vector
k and parallel to the grating grooves or lying in the k plane,

respectively). In the case of TE polarization, the unknown elec-
tromagnetic field and its normal derivative remain continuous
at the boundary. For TM polarization, the normal derivative
suffers a discontinuity, which is responsible for all subsequent
problems associated with the convergence and accuracy of
the method, an issue that nobody has yet found a way to
combat. While the CWA intuitively appears to be tractable, the
present authors are unaware of any mathematical publications
which offer a rigorous substantiation of its convergence,
even for a smooth wave-number k(x,y) relation. The main
difficulty standing in the way of such a substantiation is the
exponential growth of the elements of transmission matrices
along the rows and columns [4]. This growth gives rise to
numerical problems; matrices and the corresponding systems
of differential equations are poorly conditioned; indeed, their
eigenvalues belong to different scales, and this effect is
stronger the more harmonics are taken into account [10].
Obviously enough, diffraction problems with a discontinuity
of k at the interfaces will meet with the natural constraint on the
convergence rate for the CWA. Indeed, the Fourier coefficients
of k2(x,y) and u(x,y) cannot approach 0 fast enough for the
y = const. line which crosses the boundary. The best version of
factorization available thus far for the CWA and other similar
methods of the differential group in TM polarization, called
the fast Fourier factorization method [4], presently enjoys wide
recognition. Its authors have, however, revealed the remaining
above-mentioned limitations of a fundamental nature, which
place a constraint on the use of this approach in cases of
high conductivity in TM polarization [11]. In addition to the
fast Fourier factorization method, a lot of other substantial
improvements in the CWA have been introduced by various
authors during the last decade (see, e.g., Ref. [12]). Despite
the more stable and robust formulations presented in these
publications, good convergence of numerical examples in
TM polarization has been demonstrated for metallic lamellar
gratings with a permittivity real part not less than −102, which
corresponds to the near-infrared spectral region. Metals in
the medium-infrared, far-infrared, terahertz, and microwave
regions have smaller permittivity real parts, up to orders of
magnitude, however, the perfect conductivity model cannot be
applied to modern PBG and waveguide structures. Besides,
application of the CAW to nonlamellar profiled gratings
involves discretization into plane layers, the so-called staircase
approximation. This approximation was shown not to be
rigorous [13]; indeed, as the number of layers increases, the
result obtained in solution of the equations will not necessarily
tend to accurate values. In the case of TE polarization and
1D gratings, the convergence of this approximation is, as a
rule, good, but in the TM case an increase in the number
of layers does not improve the results; on the contrary, they
begin to diverge. This can also be seen from an analysis of
the properties of the solution in the case of one boundary
and TM polarization [14]. The conclusions drawn for the
case of 2D diffraction from 1D gratings with one boundary
will naturally hold for multiboundary gratings, conical (3D)
diffraction, and biperiodic gratings. Nevertheless, for lack of
a better alternative, the CWA is widely used for 1D and 2D
gratings in micro-optics analysis and waveguide technology,
as well as in problems involving synthesis, for instance, of
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multiorder diffraction gratings or diffraction optical elements
with preset characteristics [15].

The IM is presently universally recognized as one of the
most developed and flexible approaches to accurate numerical
solution of diffraction grating problems (cf. Refs. [1,16,17]
and references therein). Viewed in the historical context, this
method was the first to offer a solution to vector problems
of light diffraction by optical gratings with a high enough
accuracy and to demonstrate remarkable agreement with
experimental data [3,18]. This should be attributed to the high
accuracy and good convergence of the method, especially
for the TM polarization plane [17,19]. It does not involve
limitations similar to those characteristic of the CWA, and
it provides a better convergence. The disadvantages of this
method include its being mathematically complicated, as well
as numerous “peculiarities” involved in numerical realization.
Besides, application of the IM to cases of heterogeneous
or anisotropic media meets with difficulties; however, with
the volume integral method it is possible to overcome these
difficulties. Nevertheless, it is on the basis of this theory that
all the well-known problems of diffraction by periodic and
nonperiodic structures in optics and other fields have been
solved. In many cases it offers the only possible way to
follow up in research [3,20,21]. The flexibility and universality
inherent in the IM, in particular, enable one to reduce rather
easily the problem of radiation of Gaussian waves or of a
localized source to that of plane-wave incidence, for which
scientists all over the world have a set of numerical solutions.
Generalizations of the IM have recently been proposed for
arbitrarily profiled 1D multilayer gratings [22], randomly
rough x-ray–extreme-UV mirrors [23], conical diffraction
gratings including materials with a negative permittivity
and permeability [19,24,25], arbitrarily rough multilayer 1D
gratings and mirrors [26], biperiodic anisotropic structures
using a variation formulation [27], Fresnel zone plates and
diffraction optical elements [28,29], and 3D PBGs of some
geometries using volume [7] and surface [30] integrals, among
others.

The motivation for the present work is to introduce the new
method as an exact and universal approach to be applied in
areas where rapid design and analysis of the most sensitive
PBG cases would be at a premium. The corresponding
theory is described in Sec. II. The diffraction problem and
boundary relations between values of the fields across the
boundary are formulated in Sec. II A. The method of scattering
amplitude matrices (S-matrix algorithm) expedient for the
calculation of far fields and polarization properties of conical
diffraction by PBGs is described in Sec. II B. The respective
integral equations in terms of boundary potentials are given in
Sec. II C. Numerical implementation of the developed theory
is described briefly in Sec. III. Diverse numerical tests devoted
to applying the method and obtaining results for sensitive
cases of various PBGs are given in Sec. IV. In Sec. IV A
we compare our results with data obtained with the other
well-established approach and give examples of the significant
impact of rod shape and filling ratio on diffraction in metallic
PBGs supporting polariton-plasmon excitation, particularly,
close to resonances. In Sec. IV B we demonstrate the influence
of high conductivity on transmission spectra of lossless PBGs
supporting waveguide modes in different polarization states.

In Sec. IV C we calculate transmission spectra of dielectric
PBGs supporting Bragg resonances in conical diffraction.

II. THEORY

We employed the IM for a theoretical description of the
optical properties of PBGs. The theory of diffraction on
separated boundaries is covered here necessarily on the whole
because its main parts including mathematical aspects have
been derived at considerable length in Refs. [19,25,26,31,32].
The electromagnetic formulation of diffraction by gratings,
which are modeled as infinite periodic structures, can be
reduced to a system of Helmholtz equations for the z

components of the electric and magnetic fields in R2, where
the solutions have to be quasiperiodic in the x direction, to be
subject to radiation conditions in the y direction, and to satisfy
certain jump conditions at the interfaces between different
materials of the diffraction grating. In the case of classical
diffraction, when k is orthogonal to the z direction, the system
splits into independent problems for the two basic polarizations
of the incident wave, whereas in the case of conical diffraction
(Fig. 1) the boundary values of the field z components, as well
as their normal and tangential derivatives at the interfaces, are
coupled. Thus the unknowns are scalar functions in the case
of classical diffraction and two-component vector functions in
the conical case. A grating diffracts the incoming plane wave
into a finite number of outgoing plane waves, the so-called
reflected and transmitted modes or orders. The program
computes the energies and polarizations of these modes for
an arbitrary number of layers with different boundary profile
types including closed boundary profiles (i.e., inclusions). The
boundary profiles of the layers must be strictly separated, i.e.,
the maximal y value of a given profile is strictly less than
the minimal y value of the next profile above. In this case, it
is possible to determine the diffracted field of the grating by
computing scattering amplitude matrices separately for any
profile. For each interface between two different materials,
the computation of the scattering amplitude matrices corre-
sponds to solving one-boundary conical diffraction problems
with plane waves illuminating the interface from above and
below. Using the integral method one has to solve for each
interface a 2 × 2 system of singular integral equations with
different right-hand sides. The equations are discretized with a
collocation method, the unknowns are sought as trigonometric
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FIG. 1. (Color online) Schematic conical diffraction by a grating.
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polynomials, which, in the case of profiles with edges, are
partially replaced by splines to improve the approximation of
the solution near the edges.

A. Diffraction problem

In the multiboundary diffraction problem one has to deal
with cylindrical surfaces �n × R, n = 0, . . . ,N − 1, either
open or closed, which are d periodic in x and whose
generatrices are parallel to the z axis (Fig. 2). The surfaces
separate N + 1 periodic regions Gn × R, filled with material
of constant permittivity and permeability. The grating structure
is characterized by piecewise constant functions of electric
permittivity ε and magnetic permeability μ, which are d

periodic in x, homogeneous in z, and have jumps at the
surfaces �n. The values of these functions in the semi-infinite
regions G0 × R above and GN × R below the inhomogeneous
structure are denoted ε0, μ0 and εN , μN , respectively. We
assume that λ = 2πc/ω with a light velocity c at a given
pulsatance ω, and the incident time-harmonic field with
polarization vectors p and s, defined later, is given by

(Ei ,Hi) = (p,s)e−iωte i(αx−βy+γ z),

where (α,−β,γ )=ω
√

ε0μ0(sin θ cos φ,− cos θ cos φ, sin φ),
and |θ |,|φ| < π/2.

Due to the periodicity of the surfaces the incident wave
is scattered into a finite number of plane waves in G0 × R
and also in GN × R if εNμN > 0. The wave vectors of
these outgoing orders lie on the surface of a cone whose
axis is parallel to the z axis. Therefore one speaks of
conical diffraction. Classical diffraction corresponds to γ =
0, whereas γ �= 0 characterizes conical diffraction. Using
the representation of the total field E(x,y,z) = E(x,y)e iγ z,
H(x,y,z) = √

ε0/μ0B(x,y)e iγ z, the system of time-harmonic
Maxwell equations transforms to 2D Helmholtz equations in
the domains Gn, where ε and μ are constant,

[� + (ωκ)2]E(x,y) = [� + (ωκ)2]B(x,y) = 0, (1)

with the coefficient function (ωκ)2 = ω2εμ − γ 2 piecewise
constant and d periodic in x.

It can be shown that under the condition κ �= 0, which is
assumed throughout, the z components Ez and Bz of the vector
functions E and B determine the total electromagnetic field
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FIG. 2. Cross section of a grating with separated boundaries.

(E,H). The continuity of the tangential components of E and
H on the surface �n implies jump conditions for Ez,Bz in the
form (see Ref. [19])

[Ez]�n
= [Hz]�n

= 0,[
ε∂νEz

κ2

]
�n

= −ε0 sin φ

[
∂tBz

κ2

]
�n

, (2)

[
μ∂νBz

κ2

]
�n

= μ0 sin φ

[
∂tEz

κ2

]
�n

,

where [·] denotes the jump of functions on �n, and ∂ν =
νx∂x + νy∂y and ∂t = −νy∂x + νx∂y are the normal and
tangential derivatives on �n, respectively. The z components
of the incoming field,

Ei
z(x,y) = pze

i(αx−βy),

Bi
z(x,y) = sze

i(αx−βy)
√

μ0/ε0 = qze
i(αx−βy),

are α quasiperiodic in x of period d. Here the vector s is
orthogonal to the plane spanned by k and the grating normal
ν = (0,1,0) and p lies in that plane:

s = k × (0,1,0)/|k × (0,1,0)|, p = s × k/|k|.
If k = (0,−k,0), we set s = (0,0,1) and hence p = (1,0,0).
Then, the incident plane wave is given by its polarization
angles

δ = arctan[|(Ei ,s)|/|(Ei ,p)|], ψ = − arg[(Ei ,s)/(Ei ,p)],

where δ ∈ [0,π/2], ψ ∈ (−π,π ]. Since Ei is orthogonal to the
wave vector, (Ei ,k) = 0, one can decompose Ei :

Ei = (Ei , s) s + (Ei , p) p.

It is easy to see that for incident and also diffracted field
components (E,q) and (E,p) with propagation angles θ and φ

and ρ = cos φ(sin2 θ cos2 φ + sin2 φ)0.5,

(E,q) = (Ez sin θ − Bz cos θ sin φ)/ρ,

(E,p) = (Ez cos θ sin φ + Bz sin θ )/ρ,

where, if k ‖ ν, then (Ei ,q) = Ei
z and (Ei ,p) = Bi

z. The
incident values (Ei

z,B
i
z) can be defined from these equations

for the given incidence (θ , φ) and polarization (δ, ψ) angles
under some normalization condition [31].

We seek a bounded H 1-regular solution (Ez,Bz) which is
α quasiperiodic in x [u(x + d),y) = eiαdu(x,y)] and satisfies
the radiation conditions

(Ez,Bz) = (
Ei

z,B
i
z

) +
∑
m∈Z

(
Em

0 ,Bm
0

)
ei(αmx+βm

0 y)

for y � sup �0,
(3)

(Ez,Bz) =
∑
m∈Z

(Em
N,Bm

N )e i(αmx−βm
N y)

for y � inf �N−1,

where αm = α + 2πm/d and βm
n = √

ω2εnμn − γ 2 − α2
m

with 0 � arg βm
n < π . In the following it is always assumed

that, besides ε0,μ0 > 0,

0 � arg ε, arg μ � π, arg(εμ) < 2π,
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which holds for all existing optical (meta)materials [25].
Then the electromagnetic formulation of conical diffraction
on multiboundary gratings is equivalent to Eqs. (1)–(3) for
(Ez,Bz).

B. S-matrix approach

Since the grating profiles are strictly separated, the problem,
Eqs. (1)–(3), can be treated using certain robust algorithms
for modeling layered gratings (an overview is given, e.g., in
Ref. [33]). The present method extends the S-matrix algorithm
given in Ref. [34] for the integral method and the in-plane case.
As we know, the first description of the scattering amplitude
matrices algorithm has been done in Ref. [35]. Its application
to the off-plane case is described in Refs. [29,32]. Here we
give an exact description of the S-matrix algorithm combined
effectively with the conical integral equations formulated for
solving such multilayer grating problems.

Between surface �n−1 and surface �n for all n = 1, . . . ,N ,
there exist strips {un < y < dn−1} which do not cross the
interfaces for n = 1, . . . ,N (Fig. 2). In any strip {un < y <

dn−1} with the cut wave number κn, the solution (Ez,Bz) has
the series expansion

(Ez,Bz) =
∑
m∈Z

((
am

n ,cm
n

)
eiβm

n y + (
bm

n ,dm
n

)
e−iβm

n y
)
eiαmx.

Let yn ∈ (un,dn−1) and denote

(
Am

n ,Cm
n

) = e−iβm
n yn

(
am

n ,cm
n

)
,(

Am
n ,Cm

n

) = e−iβm
n+1yn

(
am

n+1,c
m
n+1

)
,(

Bm
n ,Dm

n

) = e−iβm
n yn

(
bm

n ,dm
n

)
,(

Bm
n ,Dm

n

) = e−iβm
n+1yn

(
bm

n+1,d
m
n+1

)
.

Then in the strip {un < y < dn−1} above �n,

(Ez,Bz)

=
∑
m∈Z

((
Am

n ,Cm
n

)
eiβm

n (y−yn) + (
Bm

n ,Dm
n

)
e−iβm

n (y−yn))eiαmx,

and in the strip {un+1 < y < dn} below �n,

(Ez,Bz) =
∑
m∈Z

((
Am

n ,Cm
n

)
eiβm

n+1(y−yn)

+ (
Bm

n ,Dm
n

)
e−iβm

n+1(y−yn))eiαmx,

with amplitudes of incoming An, Bn and diffracted Bn, An

waves defined as

An = {(
Am

n ,Cm
n

)}
m∈Z, Bn = {(

Bm
n ,Dm

n

)}
m∈Z,

Bn = {(
Bm

n ,Dm
n

)}
m∈Z, An = {(

Am
n ,Cm

n

)}
m∈Z.

The multiprofile problem, Eqs. (1)–(3), is solved if the
scattering amplitude columns B0 and AN−1 are expressed for
a given input A0 and vanishing BN−1. The S-matrix method
looks for a recursion of operators Rj ,Tj such that

Bn = RnAn, AN−1 = TnAn, n = N − 1, . . . ,0.

The scattering amplitude columns are connected by two types
of relations,

An−1 = γ −1
n An−1, Bn−1 = γnBn,

γn = diag
{
exp(iβm

n (yn−1 − yn)
}

m∈Z,

Bn = rnAn + t ′nBn, An = t ′nAn + r ′
nBn,

where rn or r ′
n and tn or t ′n are reflection and transmission

operators, respectively, for the illumination of �n from above
or below. This leads to a simple recursion starting from below,

Rn−1 = rn−1 + t ′n−1γnRn(I − γnr
′
n−1γnRn)−1γntn−1,

(4)
Tn−1 = Tn(I − γnr

′
n−1γnRn)−1γntn−1,

with the unity operator I and initial values

RN−1 = rN−1, TN−1 = tN−1.

Finally, one gets the desired amplitude vectors:

B0 = R0A0, AN−1 = T0A0. (5)

It is worth noting that recursion (4) is stable, since the elements
of γn have norms �1 and can be used for any number of closed
and continuous boundaries having any conductivity.

C. Integral equations

The reflection and transmission operators rn, r ′
n, tn, and t ′n of

a given profile �n, which separates two domains, are obtained
from the response of that one-profile grating illuminated
by plane waves from above and below. For definiteness
we label the domains Gn and Gn+1 and the corresponding
material coefficients εn,μn and εn+1,μn+1. If the surface �n is
continuous, then Gn+1 denotes the domain below �n, whereas
for closed boundary profiles the domain Gn+1 denotes one of
the inclusions inside �n. For off-plane diffraction one has to
find the Rayleigh coefficients of the diffracted fields for input
waves with z components,

(
E+

δ

B+
δ

)
=

(
1 − δ

δ

)
ei(αmx−βm

n y), δ = 0,1,

incident from above and(
E−

δ

B−
δ

)
=

(
1 − δ

δ

)
ei(αmx+βm

n+1y)

or

(
E−

δ

B−
δ

)
=

(
1 − δ

δ

)
ei(αmx+βm

n y), δ = 0,1,

incident from below for continuous �n or inclusions, respec-
tively.

For illumination from above, one has to solve the following
problem: Setting

Ez =
{

un + E+
δ ,

un+1,
Bz =

{
vn + B+

δ in Gn,

vn+1 in Gn+1,

find α-quasiperiodic solutions of the Helmholtz equations

(� + (ωκn)2)un = (� + (ωκn)2)vn = 0, (6)

(� + (ωκn+1)2)un+1 = (� + (ωκn+1)2)vn+1 = 0, (7)
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where now κ2
n = εnμn − ε0μ0 sin2 φ. From Eq. (2) one gets

the jump conditions on �n:

un+1 = un + E+
δ , vn+1 = vn + B+

δ ,

εn+1∂νun+1

κ2
n+1

− εn∂ν(un + E+
δ )

κ2
n

= ε0 sin φ
(
κ2

n+1 − κ2
n

)
κ2

nκ2
n+1

∂tvn+1,

μn+1∂νvn+1

κ2
n+1

− μn∂ν(vn + B+
δ )

κ2
n

= −μ0 sin φ
(
κ2

n+1 − κ2
n

)
κ2

nκ2
n+1

∂tun+1.

For illumination from below we set

Ez =
{

un,

un+1 + E−
δ ,

Bz =
{

vn in Gn,

vn+1 + B−
δ in Gn+1.

The α-quasiperiodic functions uj ,vj have to satisfy the
Helmholtz equations, (6) and (7), and the transmission condi-
tions

un+1 + E−
δ = un, vn+1 + B−

δ = vn,

εn+1∂ν(un+1 + E−
δ )

κ2
n+1

− εn∂νun

κ2
n

= ε0 sin φ
(
κ2

n+1 − κ2
n

)
κ2

nκ2
n+1

∂tvn,

μn+1∂ν(vn+1 + B−
δ )

κ2
n+1

− μn∂νvn

κ2
n

= −μ0 sin φ
(
κ2

n+1 − κ2
n

)
κ2

nκ2
n+1

∂tun.

The solution of these general one-boundary conical diffrac-
tion problems is derived by using a combination of the direct
(Green’s formula) and indirect (via layer potentials) boundary
integral approaches. In Gn+1 the functions un+1,vn+1 are
represented as single-layer potentials with densities w,τ on
�n, denoting one period of �n,

un+1(P ) =
∫

�n

w(Q)�κn+1 (P − Q)dσQ,

vn+1(P ) =
∫

�n

τ (Q)�κn+1 (P − Q)dσQ,

where P = (X,Y ) and dσQ denotes the integration with
respect to the arc length. The integral kernel �κn+1 is the
α-quasiperiodic fundamental solution of period d, with log-
arithmic singularities at points {(md,0)} given by the infinite
series

�κn+1 (P ) = i

4

∞∑
m=−∞

H
(1)
0 (ωκn+1

√
(X − md)2 + Y 2)eimdα,

where H
(1)
0 is the first Hankel function of zero order. Based on

the known jump relations for layer potentials, one concludes,
as in Ref. [19], that the transmission conditions on �n are
fulfilled only if the functions w,τ are solutions of the system

of integral equations,

εn+1κ
2
n

εnκ
2
n+1

Vn(Ln+1 − I )w − (I + Kn) Vn+1w

+ ε0 sin φ
(

1 − κ2
n

κ2
n+1

)
HnVn+1τ = U ,

(8)
μn+1κ

2
n

μnκ
2
n+1

Vn(Ln+1 − I )τ − (I + Kn) Vn+1τ

−μ0 sin φ
(

1 − κ2
n

κ2
n+1

)
HnVn+1w = V,

P ∈ �n, with right-hand sides U and V determined by the
input waves E±

δ and B±
δ . Here the integral operators Vn and

Kn are the single- and double-layer potentials

Vnϕ(P ) = 2
∫

�n

ϕ(Q)�κn
(P − Q)dσQ, P ∈ �n,

Knϕ(P ) = 2
∫

�n

ϕ(Q)∂ν(Q)�κn
(P − Q)dσQ,

where ν(Q) is the normal to �n at Q pointing into Gn+1.
These boundary integral operators as well as the adjoint of the
double-layer potential,

Lnϕ(P ) = 2
∫

�n

ϕ(Q)∂ν(P )�κn
(P − Q)dσQ,

appear already in integral methods for classical diffraction.
The presence of tangential derivatives in the jump conditions
for solutions of conical diffraction leads to a new boundary
integral:

Hnϕ(P ) = 2
∫

�n

ϕ(Q)∂t(Q)�κn
(P − Q)dσQ.

Since the kernel of this integral operator is strongly singular,
Hnϕ has to be interpreted as a principal value integral, and
therefore Eq. (8) represent a system of singular integral
equations.

Properties of this system are described in Refs. [19,25] for
the case of incident plane waves from above, where one gets

U = −2E+
δ , V = −2B+

δ

as the right-hand sides of Eq. (8). Analogously, for illumination
from below the transmission conditions on �n lead to the
right-hand sides

U = εn+1κ
2
n

εnκ
2
n+1

Vn∂νE
−
δ − (I + Kn) E−

δ

+ ε0 sin φ
(

1 − κ2
n

κ2
n+1

)
HnB

−
δ ,

V = μn+1κ
2
n

μnκ
2
n+1

Vn∂νB
−
δ − (I + Kn) B−

δ

− μ0 sin φ
(

1 − κ2
n

κ2
n+1

)
HnE

−
δ

in the case of a continuous profile and

U = −2E−
δ , V = −2B−

δ

for closed boundary profiles.
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The advantage of our integral formulation, Eqs. (4)–(8), is a
clever combination of the integral equations with the S-matrix
algorithm allowing one to solve the single discrete problem
for computing scattering amplitude matrices of Eq. (4). As
a result, the computation of the discrete matrix on the left of
Eq. (8) and its factorization have to be performed only once for
that profile due to the unified treatment of different incoming
waves.

III. NUMERICAL IMPLEMENTATION

We discuss briefly the numerical solution of systems
(4)–(8). In the computations the indices m ∈ [M0,M1] are
chosen such that at least all propagating modes for all one-
profile gratings are covered; i.e., we require that βm

n /∈ R
for all m /∈ [M0,M1] and n. Thus, by solving Eq. (8) for
M = 2(M1 − M0 + 1) incident waves E+

δ ,B+
δ and computing

the scattering amplitudes for all modes m ∈ [M0,M1] of un,vn

and un+1,vn+1, we derive M × M reflection and transmission
matrices rn and tn for illumination from above. Analogously,
the M × M reflection and transmission matrices r ′

n and t ′n
are obtained from Eq. (8) with M incident waves E−

δ ,B−
δ ,

illuminating the profile from the below. These reflection and
transmission matrices for each boundary profile are computed
simultaneously as described above.

The kernels of the integrals Vn have a logarithmic singu-
larity like log |s − t | and Hn is a singular integral operator
with the kernel singularity 1/(s − t) as t → s. Therefore
the discretization of the integrals requires some caution,
especially if the profile has corners, where additionally the
kernels of Kn and Ln have fixed singularities. The integral
equations are discretized with a collocation method, and the
unknowns are sought as trigonometric polynomials, which,
in the case of gratings with edges, are partially replaced by
splines to improve the approximation of the solution near the
profile corners [19]. The trigonometric collocation method
with special treatment of singular integrals gives, for smooth
boundary profiles with the number of collocation points N , a
convergence rate of order O(N−3). The hybrid trigonometric-
spline collocation with mesh grading near corners gives a
convergence rate of order O(N−2).

Expressions (4) allow us to find amplitude matrices by a
recursive procedure beginning with the lower medium. To do
this, we have to know, in the general case, four matrices of
scattering amplitudes and perform two matrix inversions in
each iteration step. The computation time for one-boundary
problems was shown to scale quadratically with the main
accuracy parameter (the number of collocation points) [19].
The computation time is also linearly proportional to the
number of boundaries. Using Hankel functions as fundamental
solutions for closed boundaries decreases the number of
required collocation points in several times. The memory cache
for amplitude matrices of multilayer grating problems (e.g.,
photonic crystals) with the same boundary profiles and the
same pairs or quads of layers can be used.

The code developed and tested is found to be accurate and
efficient for solving various in-plane and off-plane diffraction
problems, including high-conductive gratings, surfaces with
edges, real groove profiles, and gratings with nonfunction
boundary profiles. Extension to rod gratings and 2D PBGs

is naturally obtained. The high rate of convergence, the high
accuracy, and the short computation time of the suggested
solver are further demonstrated for various nontrivial numeri-
cal examples.

IV. COMPUTATION OF PBG EXAMPLES
IN SENSITIVE CASES

The workability of the code developed has been confirmed
by numerous tests usually employed in classical and conical
diffraction cases: more specifically, the reciprocity theorem;
stabilization of results under doubling of the number of
collocation points and variation of the calculation accuracy of
kernel functions; comparison with analytically amenable cases
of plane interfaces; consideration of the inverse (nonphysical)
radiation condition; use of different variants of the collocation
point distribution on boundaries (mesh refinements); and
comparison with the results obtained by another of our codes
or with published data, or with information submitted to us
by other researchers, including results of measurements. A
small portion of such numerical tests devoted to the analysis of
sensitive cases of various PBGs is demonstrated in this section.
The presented results demonstrate the impact of rod shape on
diffraction in PBGs supporting polariton-plasmon excitation
and other types of anomalies (i.e., waveguiding anomalies,
cavity modes, Fabry-Perot resonances, Rayleigh orders, etc.),
particularly in the vicinity of resonances and at high filling
ratios. In conical diffraction, the influence of all possible types
of waves can be mixed.

A. PBGs with nanorods supporting polariton-plasmon
excitation

In this section, we analyze numerically the optical response
of photonic crystal slabs supporting polariton-plasmon ex-
citation with different cross sections of nanowires invariant
with respect to the z axis and different numbers of gratings
stacked one upon the other. The essential physics of the
formation of individually localized plasmon polariton modes
(so-called particle plasmons) in multilayer metallic nanowire
arrays is well described in Ref. [36]. As far as we know
from the literature, there is no detailed description of the
influence of very different rod geometries and of the filling
factor on PBGs with nanowires supporting polariton-plasmon
excitation. The model contains N − 1 identical gratings of
arbitrary cross section displaced vertically (by Hn) and
horizontally (by Ln) relative to one another and embedded
in a homogeneous medium with dielectric permittivity ε1 and
magnetic susceptibility μ1. We deal here only with materials
with μn = 1, although the model is applicable to other cases
as well, including metamaterials [19]. The dependence of the
dielectric permittivity ε2 of the material of nanorods on the
incident photon frequency is assumed to be known. The lower
medium (substrate) and the upper one are likewise assigned
pairs of material constants, but one may conceive of more
complicated cases of multilayer structures as well. The model
also allows an arbitrary incidence of, in the general case,
elliptically polarized radiation on PBGs, which is prescribed
by two angles of incidence and two angles of polarization.
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FIG. 3. (Color online) Calculated reflection and absorption spec-
tra of SiO2-embedded d = 200 nm gratings with Au nanowires of
100 × 15 nm2 rectangular cross section and different vertical, H , and
horizontal, L, displacements are plotted vs photon energy for normal
incidence and TM polarization.

In Fig. 3, calculated spectra of reflected energy for PBGs
with Au nanowires of rectangular cross section, measuring
100 × 15 nm2 and N − 1 = 1 (H = L = 0) or N − 1 = 2
(H = 30 nm, L = 0 and H = 30 nm, L = 100 nm), are
compared with similar spectra derived in Fig. 3(a) in Ref. [36]
by the plane-wave expansion approach. We consider here
TM-polarized radiation (the plane of polarization is perpen-
dicular to the lines) incident normally with respect to the x-z
plane) on a grating with a period d = 200 nm and refractive
indices of Au taken from Ref. [37]. To eliminate interfer-
ence effects, the Au nanorods are embedded in an infinite
homogeneous fused silica matrix with dielectric permittivity
ε0,1,3 = 2.13. Examining the two figures, we see a very good
agreement, which supports the applicability of both rigorous
numerical methods to the analysis of diffraction on such PBGs
with rectangular slabs.

Figure 4 displays, for comparison, theoretical spectra of
energy reflected from, and absorbed by, a PBG with Au
nanowires of circular, square, rectangular, and triangular
cross sections of the same area and with N − 1 = 1 studied
in the range 1–3 eV (visible and near-infrared). In this
and subsequent examples we consider TM-polarized light
normally falling on Au nanowires embedded in a SiO2 matrix
with d = 200 nm and refractive indices of Au taken from
Ref. [38]. The orientation of the rods having edges is chosen
in such a way that light normally falls on one side of the rods
only. The a × b dimensions of the rectangular rods selected
for this example are 50 × 25 or 25 × 50 nm2 and the width
of the squares or triangles and diameter of the circles were
chosen to obtain equal cross-sectional areas S = 1250 nm2.
As shown in Fig. 4, reflection and, particularly, absorption
spectra exhibit a strong difference near the plasmon-polariton
anomaly among the five shapes of nanowire cross sections
chosen. These differences amount to several hundred percent
for the rectangles because of their different width-to-height

FIG. 4. (Color online) Calculated reflection and absorption spec-
tra of SiO2-embedded d = 200 nm gratings with Au nanowires
of different cross sections, the same area of S = 1250 nm2, and
H = L = 0 (N − 1 = 1) are plotted vs photon energy for normal
incidence and TM polarization.

ratio (2 and 0.5) compared with the square or the circle (1) and
the equilateral triangle (0.866). One also observes a noticeable
difference in the positions of the absorption and reflection
maxima among different grating profiles. Thus, the simple
effective medium theory cannot be applied to the design and
analysis of such PBGs, even for a low filling ratio.

Figure 5 presents energy spectra similar to those displayed
in Fig. 4 but for S four times that in the preceding example. In
this case, a × b = 100 × 50 nm2 or 50 × 100 nm2. We readily
see that the differences in the reflection and absorption spectra
among gratings of different profiles increase with increasing
filling ratio and are observed now not just close to the plasmon
resonances. Near the resonances, they amount to a few tens

FIG. 5. (Color online) The same as Fig. 4, but for the same
nanowire cross section area of S = 5000 nm2.
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FIG. 6. (Color online) Calculated reflection and absorption spec-
tra of SiO2-embedded d = 200 nm gratings with Au nanowires of
different cross sections, the same areaS = 5000 nm2, and N − 1 = 2,
H = 50 nm, L = 0 are plotted vs photon energy for normal incidence
and TM polarization.

percent of energy (Fig. 5). Absorption spectra of triangular-
shaped nanowires have an interesting band-gap-like structure
that is not the case for absorption spectra of nanowires of other
rod shapes.

Figure 6 shows spectra similar to those depicted in Fig. 5
but for N − 1 = 2, H = 50 nm, and L = 0. In the case of
two gratings, the plasmon-polariton resonance frequencies are
subtracted or summed [36], and one may expect still larger
differences in the spectra of reflected and absorbed energy
among crystals with lattice cells of different shapes. Indeed,
Fig. 6 drawn on a log scale reveals enormous differences, up
to orders of magnitude, throughout the spectrum studied. The
minimum reflectance of ∼10−6 is observed for a PBG with a
rectangular cross section of 100 × 50 nm2. The positions of
the reflection minima are also very different for different rod
shapes.

OnlyN = 50 and mesh grading were used to compute these
examples, which allocate ∼0.1 MB memory. The relative error
calculated from the energy balance for absorption gratings is
∼10−4. The average time taken up by one point on a portable
IBM workstation ThinkPad R50p with an Intel Pentium
M 1.7-GHz processor and 2 GByte of RAM is ∼0.1 s only
when operating on Linux (kernel 2.6.17).

B. PBGs with high-conductive rods supporting
waveguide modes

As demonstrated in the previous example, owing to the
existence of surface plasmon resonance, even a single-
grating structure could almost totally transmit TM polarization
(Figs. 3–6). One can exclude the influence of plasmon
surface waves using a grating structure in TE polarization
for which plasmons cannot propagate and investigate the role
of waveguide modes and Fabry-Perot resonances.

FIG. 7. (Color online) TE and TM transmittances of a d = 10 mm
grating with high-conductive rectangular rods of 7 × 1 mm2 cross
section, which are embedded in a matrix with n0 = 3.47, N − 1 =
2, H = 1 mm, and L = 0, are plotted vs Im[n]. Calculations were
performed for normal incidence at λ = 15.24 mm.

Figure 7 displays transmission TE and TM spectra for PBGs
with high-conductive lossless (Re[n2] = 0) rectangular rods of
7 × 1 mm2 with d = 10 mm embedded in a matrix with n1 =
3.47 for N − 1 = 2, H = 1 mm, and L = 0 at λ = 15.24 mm.
The outermost media have refractive index n0,3 = 1. Very
similar spectra were calculated in Fig. 10 a in Ref. [39] by
the CWM for TE polarization and Im[n2] = 250 only. In
addition, the efficiency simulation data based on the present
IM were cross-checked in both polarization states against the
rigorous generalized finite element method (GFEM) [40], in
order to verify the reliability of the results obtained. The
grating efficiencies calculated with two different approaches
mentioned above are in good agreement for all compared
Im[n2] data. Obviously enough, the difference between the
transmittance values calculated by the two independent codes
is bigger for the TM polarization state and higher Im[n2]. So
the applicability of the IM and GFEM to analyze both TE and
TM diffraction on such PBGs for high values of the imaginary
part of the refractive index of rods is demonstrated. One can
also compare the absolute efficiencies of this example with
values predicted by the perfect-conductivity model (Fig. 7).
The asymptotic transmittance data calculated using that model
are ∼44% (TE) and ∼59% (TM). Interestingly, even at the
very high value of Im[n2] = 1000, the results obtained for
the finite-conductivity model differ significantly from those
obtained for the perfect-conductivity model.

For this very-hard-to-solve example we examine the con-
vergence rate and the accuracy of the prediction of reflection
and transmission energies and absorption with respect to
N . For the efficiency convergence testing, the magnitude
of computational errors cannot be reliably deduced from
accuracy criteria based on a single computation such as the
energy balance or the inverse radiation condition tests. For
this purpose, comparative studies should be used, i.e., N
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FIG. 8. (Color online) TE and TM transmittances of a d = 10 mm
grating with high-conductive rectangular rods of 7 × 1 mm2 cross
section, which are embedded in a matrix with n0 = 3.47, N − 1 = 2,
H = 1 mm, and L = 0, are plotted vs the number of collocation
points. Calculations were performed for normal incidence at λ =
15.24 mm.

doubling [19]. As shown in Fig. 8, the IM transmittance
values for Im[n2] = 250 and Im[n2] = 500 stabilize, and the
convergence starts at N = 500 (TE) and N = 1000 (TM)
and is achieved with a high accuracy at N = 1000 (TE) and
N = 2000 (TM). The absolute differences between the values
calculated for N = 1000 and N = 4000 in the transmission
energies for Im[n2] = 250 are 0.00353 for TE polarization and
0.0111 for TM polarization. Note that the energy balance errors
are ∼10−5 and ∼10−6 for these values of N , respectively.
However, transmittance values for the hard case of Im[n2] =
1000 stabilize at N = 4000 only. Thus, the convergence rate
is high enough, taking into account the very difficult cases
tested.

The computation time for a point calculated with (N =
2000) is ∼30 s on the above- mentioned PC, and the required
RAM is ∼1 GB. In this case the use of graded meshes gave the
most accurate results compared with data obtained by applying
other computational options.

C. PBGs with dielectric rods supporting Bragg diffraction

In this example we consider numerically some diffraction
properties of nonabsorbing PBGs with dielectric rods. The
influence of the geometry and number of crystal layers, the
shape of the rods, the filling ratio, the index of refraction
of materials, and the polarization and diffraction angles of
light can be investigated for this type of PBGs. The vital
role of the filling ratio, refractive index, and polarization
was demonstrated for classical diffraction [2,34]. Here we
demonstrate, as an example of the possibilities of developed
software, the vital role of the filling ratio and polarization for
conical diffraction.

Figures 9 and 10 display spectral transmission for PBG
circular rods with d = 1 μm and n2 = 2 embedded in a

FIG. 9. (Color online) Calculated transmission spectra of a d =
1 μm grating with dielectric circular rods with n2 = 3.47 and filling
ratio ρ, embedded in a vacuum with N − 1 = 15, H = 0.866 μm,
and L = 0.5 μm, are plotted vs the wavelength of incidence radiation
with θ = 0, φ = 0 (classical diffraction), and polarization angle δ.

vacuum at filling ratios of 0.125 and 0.5 for N − 1 = 15, H =
0.866 μm, and L = 0.5 μm (hexagonal crystal geometry) for
θ = 0, ψ = 0, and δ = 90◦ (TE or s polarization) or δ = 0◦
(TM or p polarization). Figure 9 shows in-plane diffraction
efficiencies (φ = 0) and similar transmittance data computed
in Ref. [34] by the IM (Figs. 6 and 11 in Ref. [34]). In Fig. 10,
for off-plane diffraction φ = 30◦ and this is an additional
parameter compared with the classical diffraction case.

For both in-plane and off-plane examples there is a very
different behavior in diffraction properties for the TE and
TM polarizations of the incident radiation, especially for high
filling ratios. Compared with the respective curves obtained

FIG. 10. (Color online) The same as Fig. 9, but for φ = 30◦

(conical diffraction).
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in Figs. 9 and 10, it emerges that for s-polarized light the
centers of the conical diffraction gaps have shifted significantly
to lower wavelengths and the widths and depths of the gaps
have decreased considerably. In contrast to this behavior, for
p-polarized light the centers of the conical diffraction gaps
compared with the in-plane ones have shifted a little bit
in opposite directions and the widths and depths of these
gaps have increased considerably. The vital importance of
the azimuthal angle φ as well as the incidence polarization
has become evident even for a low filling ratio (0.125),
however, they are more important for a high filling ratio (0.5).
Thus, using the conical diffraction for dielectric PBGs gives
additional control parameters which significantly affect Bragg
diffraction and existing PBGs.

Only N = 50 without mesh grading is required to compute
this example, which allocates ∼0.2 MB memory. The relative
error calculated from the energy balance for nonabsorption
gratings is ∼10−4. The average time taken up by one point on
the above-mentioned PC is ∼1 s.

V. SUMMARY AND CONCLUSIONS

The multilayer integral-equation-based method is proposed
to calculate diffraction properties of PBGs with separated
boundaries. It is possible to determine the diffraction-field
amplitudes by computing the scattering matrices separately
for various grating boundary profiles including dielectric, ab-
sorbing, and high-conductive rods working in any wavelength
range. Computation of the matrices is based on the solution of
a 2 × 2 system of singular integral equations at each interface
between two different materials. The discretization of the
integral equation system and the factorization of the discrete
matrices (which takes the major computing time for one-
boundary problems as well) have to be performed only once
in order to compute these matrices for each boundary profile.
It turns out that, due to the high convergence rate, a small
number of collocation points per boundary combined with a
high convergence rate can provide an adequate description of
the dependence on diffracted energy of very different PBGs
illuminated at arbitrary incident and polarization angles.

In the present numerical analysis of the optical response
of PBGs, a significant impact of rod shapes on diffraction
supporting polariton-plasmon excitation, particularly in the
vicinity of resonances and at high filling ratios, has been
investigated. The most sensitive rod shapes are rectangular
and triangular due to their lower symmetry and special reso-
nance features connected with edges. The diffracted energy
response calculated vs the array-cell geometry parameters
was found to vary from a few up to a few hundred percent.
The influence of other types of anomalies (i.e., waveguide
anomalies, cavity modes, Fabry-Perot and Bragg resonances,
Rayleigh orders, etc.), conductivity, and polarization states
has been demonstrated. Unexpectedly, the results obtained for
the finite-conductivity model of PBGs with high-conductive
lossless (Re[n2] = 0) rectangular rods at very high values of
Im[n2] differ significantly from those obtained for the perfect-
conductivity model. The vital role of conical diffraction(φ �=
0) as well as incident polarization has been demonstrated for
PBGs with dielectric circular rods supporting Bragg diffraction
at different filling ratios. Thus, the rod and diffraction
geometries, conductivity, and polarization cannot be ignored
in many sensitive cases, and simple and inaccurate theories
cannot be applied to the design and analysis of such complex
PBGs. The multilayer conical solver developed and tested is
found to be very accurate and fast for solving PBG diffraction
problems with high-conductive rods of arbitrary shapes, in
particular, with real boundary profiles, the case that should
be studied experimentally. Due to the good convergence, the
considered IM can be extended to handle 3D PBGs (2D
multilayer diffraction gratings), which will be addressed in
future publications.
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