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The paper reports on the electromagnetic solution
of scattering from 2D rough surfaces in short waves
using boundary integral equations for conical diffrac-
tion and Monte Carlo simulations. The general
equivalence rule for determination of the efficien-
cies of reflected orders of bi-gratings from those cal-
culated for classical gratings is derived. The mean
differential reflection coefficient of a rough mirror
working at an x-ray wavelength under grazing inci-
dence has been computed for the first time using the
equivalence formulae.

1 Introduction

Multi-wave and multiple diffraction, refraction, ab-
sorption, waveguiding, and wave deformation gov-
ern to a considerable extent scattering of x-ray
and extreme ultraviolet radiation and cold neutrons
from nanoroughness of continuous media. Inclu-
sion of these pure dynamic effects, which requires
application of electromagnetic theory, permits one
to calculate the absolute intensity of the specular
component and describe adequately the intensity
distribution of the diffuse component which may
have resonance peaks. Some surfaces are deter-
ministic, e.g., perfect gratings, and some are ran-
dom, e.g., polished mirrors. Some surfaces are 1D,
e.g., classical gratings with one-dimensional period-
icity (1D gratings) and cutting mirrors, but most
are 2D, e.g., bi-periodic gratings (bi-gratings or 2D
gratings), ocean surfaces, and surfaces with atomic
scale roughness. Any number of possible combi-
nations between these four characteristics may be
present in real structures, e.g., 1D gratings with 2D
random roughness. Despite the impressive progress
reached recently in development of exact numer-
ical methods of investigation of wave diffraction
from boundary roughness [1,2], the present author
is aware only of asymptotic and perturbation ap-
proaches to the analysis of x-ray and cold neu-
tron scattering for 2D rough surfaces, such as the
scalar Kirchhoff integral, parabolic wave equation,

Rayleigh method, Born approximation, distorted-
wave Born approximation, and a few others [3, 4].
It is well-known that solution of the 2D and 3D

Helmholtz equations with any rigorous numerical
codes meets with difficulties at high ratios of char-
acteristic dimension to wavelength λ. The rigorous
modified method of boundary integral equations
(MIM) [4, 5] has been widely employed in analyzing
the efficiency of bulk and multilayered diffraction
gratings, including but not restricted to those in x-
rays and conical mounts [6]. The approach is very
accurate and fairly fast convergent in the range of
very small ratios of λ to period d and groove depth
h, particularly for structures with real (measured
or obtained from a growth model) boundary pro-
files [7]. The method, which has been developed
in the frame of electromagnetic theory, permits ap-
plication of optical methods to analysis of specular
and non-specular x-ray scattering from rough grat-
ings and mirrors using Monte Carlo calculus. The
question of the closeness of results for 1D and 2D
surfaces is of interest of this publication, since nu-
merical methods for 1D surfaces are well established
and efficient, and widely used for surfaces with 2D
roughness [2].

2 Diffraction problem

We denote by ex, ez and ez the unit vectors of the
axes of the Cartesian coordinates. The grating is
a cylindrical surface whose generatrices are parallel
to the z-axis and whose cross section is described
by the curve Σ (Fig. 1). We suppose that Σ is
not self-intersecting and d-periodic in x-direction.
The grating surface is the boundary between two
regions G±×R ⊂ R3 which are filled with materials
of constant electric permittivity ε± and magnetic
permeability µ±.
We deal only with time-harmonic fields; conse-

quently, the electric and magnetic fields are rep-
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Figure 1: Schematic cross section of a grating.

resented by the complex vectors E and H, with
a time dependence exp(−iωt) taken into account.
The wave vector k+ of the incident wave in G+×R,
where ε+, µ+ > 0, is in general not perpendicu-
lar to the grooves (k+ · ez ̸= 0). Setting k+ =
(α,−β, γ), the surface is illuminated by a electro-
magnetic plane wave

Ein = p e i(αx−βy+γz) , Hin = s e i(αx−βy+γz),

which due to the periodicity of Σ is scattered into
a finite number of plane waves in G+ ×R and pos-
sibly in G− × R as well. The wave vectors of these
outgoing modes lie on the surface of a cone whose
axis is parallel to the z-axis. This therefore is the
case of conical diffraction.

The components of k+ satisfy the relation,

β > 0 and α2 + β2 + γ2 = ω2ε+µ+ ,

and can be expressed through the incidence angles
|θ|, |ϕ| < π/2

α,−β, γ = ω
√
ε+µ+(sin θ cosϕ,− cos θ cosϕ, sinϕ).

Classical diffraction corresponds to k+ · ez = 0,
whereas ϕ ̸= 0 characterizes conical diffraction.

Since the geometry is invariant with respect to
any translation parallel to the z-axis, we make the
ansatz for the total field

(E,H)(x, y, z) = (E,H)(x, y) e iγz (1)

with E,H : R2 → C3. This converts the time-
harmonic Maxwell equations in R3

∇×E = iωµH and ∇×H = −iωεE , (2)

with piecewise constant functions ε(x, y) = ε±,
µ(x, y) = µ± for (x, y) ∈ G±, into a 2D problem.
This was described in [8] and analytically justified
in [9]. Introducing the transverse components

ET = E − Ezez, HT = H −Hzez,

representation (1) and Eqs. (2) lead to

(ω2εµ− γ2)ET = iγ∇Ez + iωµ∇× (Hzez),

(ω2εµ− γ2)HT = iγ∇Hz − iωε∇× (Ezez).
(3)

Denoting γ = ω(ε+µ+)
1/2 sinϕ, we introduce the

piecewise constant function

κ(x, y) =

{
(ε+µ+ − ε+µ+ sin2 ϕ)1/2 = κ+ ∈ G+

(ε−µ− − ε+µ+ sin2 ϕ)1/2 = κ− ∈ G−

(4)

with the square root z1/2 = r1/2 exp(iφ/2) for z =
r exp(iφ), 0 ≤ φ < 2π. As seen from (3), by the
condition κ ̸= 0, which will be assumed throughout,
the components Ez,Hz define the electromagnetic
field (E,H).
Maxwell’s equations (2) imply that Ez, Hz satisfy

the Helmholtz equations

(∆ + ω2κ2)Ez = (∆ + ω2κ2)Hz = 0 (5)

in G±. The continuity of the tangential compo-
nents of E and H on the surface takes the form[

(n, 0)× E
]
Σ×R =

[
(n, 0)×H

]
Σ×R = 0,

where (n, 0) = (nx, ny, 0) is the normal vector on
Σ×R and

[
(n, 0)×E

]
Σ×R denotes the jump of the

function (n, 0)×E across the surface. This leads to
the jump conditions for Ez,Hz across the interface
Σ of the form [

Ez

]
Σ
=
[
Hz

]
Σ
= 0,[ γ

ω2κ2
∂tHz +

ωε

ω2κ2
∂nEz

]
Σ

=
[ γ

ω2κ2
∂tEz −

ωµ

ω2κ2
∂nHz

]
Σ
= 0.

Here ∂n = nx∂x+ny∂y and ∂t = −ny∂x+nx∂y are
the normal and tangential derivatives on Σ, respec-
tively. We introduce Bz = (µ+/ε+)

1/2Hz and use
γ to rewrite the jump conditions in the form[

Ez

]
Σ
=
[
Hz

]
Σ
= 0,[ε ∂nEz

κ2

]
Σ
= −ε+ sinϕ

[∂tBz

κ2

]
Σ
,[µ∂nBz

κ2

]
Σ
= µ+ sinϕ

[∂tEz

κ2

]
Σ
.

(6)
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The z-components of the incoming field

Ein
z (x, y) = pz e

i(αx−βy), Bin
z (x, y) = qz e

i(αx−βy),

qz = (µ+/ε+)
1/2sz, (7)

are α-quasiperiodic in x of period d, i.e. satisfy the
relation

u(x+ d, y) = eidα u(x, y).

The periodicity of ε and µ suggests that we look
for α-quasiperiodic solutions Ez, Bz. Furthermore,
the diffracted fields must remain bounded at infin-
ity, which implies the well known outgoing wave
conditions

(Ez, Bz)(x, y) = (Ein
z , B

in
z ) +

∑
n∈Z

(E+
n , B

+
n )

× ei(αnx+β+
n y), y ≥ H;

(Ez, Bz)(x, y) =
∑
n∈Z

(E−
n , B

−
n )

× ei(αnx−β−
n y), y ≤ −H,

(8)

with unknown Rayleigh coefficients E±
n ,H

±
n ∈ C,

where Σ ⊂ {(x, y) : |y| < H}, and αn, β
±
n are given

by

αn = α+
2πn

d
, β±

n =
√
ω2κ2± − α2

n, 0 ≤ arg β±
n < π.

In the following it is always assumed that

0 ≤ arg ε−, argµ− ≤ π , arg(ε−µ−) < 2π, (9)

which holds for all existing optical (meta)materials.
Now 0 ≤ arg κ2− < 2π and β−

n are properly defined
for all n.

Denoting the z-components of the total fields by

Ez =

{
u+ + Ein

z

u−
, Bz =

{
v+ +Bin

z in G+

v− in G−
,

the problem (5), (6), (8) reduces now to

∆u±+ω2κ2±u± = ∆v±+ω2κ2±v± = 0 in G±; (10)

u− = u+ + Ein
z ,

ε−∂nu−
κ2−

− ε+∂n(u+ + Ein
z )

κ2+
= ε+ sinϕ

(
1
κ2
+
− 1

κ2
−

)
∂tv−,

v− = v+ +Bin
z ,

µ−∂nv−
κ2−

− µ+∂n(v+ +Bin
z )

κ2+
= −µ+ sinϕ

(
1
κ2
+
− 1

κ2
−

)
∂tu−;


Σ

(11)

(u+, v+)(x, y) =

∞∑
n=−∞

(E+
n , B

+
n ) ei(αnx+β+

n y),

y ≥ H,

(u−, v−)(x, y) =

∞∑
n=−∞

(E−
n , B

−
n ) ei(αnx−β−

n y),

y ≤ −H.
(12)

A derivation of the boundary integral equations us-
ing potential operators as well as some details of the
numerical implementation of Eqs. (10)–(12) can be
found in Ref. 6.

3 Reflection coefficients and absorption

The reflected and transmitted diffraction orders
(plane waves) of number n have the wave vectors

k±n = (αn, β
±
n , γ)

= k±(sin θ±n cosϕ±, cos θ±n cosϕ±, sinϕ±),

with (k±)2 − γ2 ≥ α2
n. Since the z-dependence of

all functions is given by exp(iγz)

tan θ±n = ∓αn/β
±
n = ∓αn/[(k

±)2 − γ2 − α2
n]

1/2,

ϕ+n = ϕ+ = ϕ , ϕ−n = ϕ− = arcsin(k+ sinϕ/k−).

By the convention, to ensure that θ+0 = −θi, the
outgoing angles θ±n of the reflected and transmitted
orders are taken from the interval [−π/2 , π/2], as
well as ϕ+ and ϕ−.
The p and s components of diffraction order fields

are defined similar to those of the incident wave
(7). For a reflected or transmitted order with the
wave vector k±

n polarization angles δ±n and ψ±
n are

determined using the scalar products (E±
n , s

±
n ) and

(E±
n ,p

±
n )

δ±n = arctan[|(E±
n , s

±
n )|/|(E±

n ,p
±
n )|],

ψ±
n = − arg[(E±

n , s
±
n )/(E

±
n ,p

±
n )].

The efficiency of a diffracted order represents the
proportion of power radiated in each order. Defin-
ing the power as the flux of the Pointing vector
modulus |Pin| = Re (Ein ×Hin)/2 (U denotes the
complex conjugate of U) through a normalized rect-
angle parallel to the (x, z)-plane, the ratio of the
power of a reflected or transmitted propagating or-
der to that of the incident wave gives the conical
diffraction efficiency η±n of this order in the simple
form:

η±n = (β±
n /β)

(
|(E±

n , s
±
n )|2 + |(E±

n ,p
±
n )|2

)
. (13)
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If Im k− > 0 then there are no transmitted or-
ders. Thus the usual law of the energy conservation,
i.e. the sum of the efficiencies of all reflected and
transmitted orders should be equal to the power
of the incident wave, does not hold here. Instead,
some part of the power is absorbed in the substrate.
If the grating is absorbing, then conservation of en-
ergy is expressed by a criterion

R+A =
∑
β+
n >0

η+n +A = 1, (14)

where R is the sum of the reflection order efficien-
cies and A is the absorption in the single-boundary
off-plane problem that can be computed from inte-
grals of the solution of the partial differential for-
mulation of conical diffraction which is derived ap-
plying Green’s formulae [6]:

A =
(κ+)2

β
Im

[
1

(κ−)2

(
ε−

ε+

∫
Γ

∂nEz Ez

+
µ−

µ+

∫
Γ

∂nBz Bz + 2 sinϕRe

∫
Γ

Ez ∂tBz

)]
.

(15)

The balance requirement of Eq. (14) is one of the
most important accuracy criteria based on a single
computation generalized in the lossy case by the
explicit computation of A from Eq. 15. The sum
R+A is actually the energy balance for an absorb-
ing grating or a rough mirror in conical diffraction,
and the extent to which it approaches unity is a
measure of the accuracy of a calculation.

For λ/d ≪ 1, the discrete order efficiencies is
an approximation of the differential reflection coef-
ficient (DRC) ζ (bistatic scattering coefficient [1])
for a continuum of scattered angles so that∑

β+
n >0

η+n =

∫ π/2

−π/2

ζ(θ+n )dθ
+
n . (16)

The general case of 2D rough surfaces may be
considered in a similar way. It can be done by ex-
pressing the solution of the 3D Helmholtz equation
for bi-gratings through solutions of the 2D one for
classical gratings, an approach which may be re-
sorted to in some important cases described below.

The effect of roughness on the mirror DRC can
be exactly taken into account with the model in
which an uneven surface is represented by a bi-
grating with large periods dx,z in perpendicular
planes, which include appropriate numbers of ran-
dom asperities with correlation lengths ξx,z. The

code analyzes a complex structure which, while be-
ing the bi-grating from a mathematical viewpoint,
is actually the rough surface for dx,z ≫ ξx,z. If
ξx,z ∼ λ and the number of orders is large, the con-
tinuous angular distribution of the energy reflected
from randomly rough boundaries can be described
by a discrete distribution ηmn in orders (m,n) of
the bi-grating, similar to Eq. 16 for classical grat-
ings. A study of the scattering intensity starts with
obtaining statistical realizations of profile bound-
aries of the structure to be analyzed, after which
one calculates the DRC for each realization, to end
with the DRC averaged out over all realizations to
obtain a mean DRC. By selecting large enough sam-
ples and numbers of sampling points, one comes
eventually to properly averaged properties of the
rough surface; however, this approach does not in-
volve approximations, including averaging by the
Monte Carlo method.

4 Derivation of the connection equation

A general approach to find efficiencies of bi-gratings
and mean DRCs of rough 2D surfaces which per-
mits one to use exact integral equations, rigor-
ous (extended) boundary conditions, and radia-
tion conditions leads to tedious calculus even in
a case of perfectly conductive surfaces [10]. How-
ever, the boundary problem can be largely simpli-
fied for shallow gratings and randomly-rough sur-
faces if we use the Rayleigh hypothesis together
with the small-amplitude perturbation technique
[11–13]. Implementations of such a method, in
which the reduced Rayleigh equations for reflec-
tion from such a structure are solved in the form
of expansions of the amplitudes of the p- and s-
polarized components of the scattered field in pow-
ers of the surface profile function through terms, up
to the third order, were proposed in several papers
(see Ref. 12 and references therein). In the present
work the author uses results obtained in perturba-
tive analysis only in order to derive an approximate
connection rule between the efficiency of a shallow
bi-grating and efficiencies of two classical gratings
with grooves turned through 90 deg. The order effi-
ciency itself of a classical grating working in conical
diffraction is defined rigorously using the boundary
integral equation method, as it is described above.
We will be looking for a perturbative develop-

ment of the reflection operator R in powers of the

heights h
(i)
x and h

(j)
z of a bi-periodic surface (ei-

ther conductive or dielectric) that is the sum of
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the two Fourier series:

h(x, z) = hx + hz =
∑
i

h(i)x sin
(
2πxi/dx + τ (i)x

)
+
∑
j

h(j)z sin
(
2πzj/dz + τ (j)z

)
. (17)

Such a representation of h(x, z) is typical for real
2D surfaces obtained, e.g., as a linear response of a
photoresist to light with two separate exposures in
perpendicular planes or by polishing using a linear
tool. Note that the 2D Fourier transformation of
h(x, z) is also the sum of two 1D Fourier transforms
of hx and hz. We assume also that the bi-grating
works under arbitrary incidence and polarization
states of a plane monochromatic wave, and that the
respective single-periodic gratings work in conical
diffraction. Suppose also for simplicity hx and hz
are even functions that is true for many ergodic
stationary processes. Replacing hx or hz by −hx
or −hz does not change the diffraction pattern in
the far-field zone. We will study the perturbative
expansion of the reflected efficiency η as a function

of the surface heights (h
(i)
x )2 and (h

(j)
z )2. Using the

perturbative expansion of R, the terms of η which

contain an expression such as (h
(i)
x )2k, (h

(j)
z )2l will

be denoted by Rkl:

η ≈ R00 +R01 +R10 +R11 +R02 +R20 + ...

Using the quasi-periodicity property of R [13]
and Taylor expansion of scattered field amplitudes
in powers of the surface profile heights (e.g, see
Eq. 53 of Ref. 12), ηmn, ηm, and ηn can be ex-
pressed in the following form:

ηmn − o(h6) = δmna00 +
∑
i

a
(i)
10 (h

(i)
x )2 + a

(i)
20 (h

(i)
x )4

+
∑
j

a
(j)
01 (h

(j)
z )2 + a

(j)
02 (h

(j)
z )4 +

∑
i,j

a
(i,j)
11 (h(i)x h(j)z )2,

(18)

ηm − o(h6x) = δm0a00 +
∑
i

a
(i)
10 (h

(i)
x )2 + a

(i)
20 (h

(i)
x )4,

(19)

ηn − o(h6z) = δ0na00 +
∑
j

a
(j)
01 (h

(j)
z )2 + a

(j)
02 (h

(j)
z )4,

(20)

where δm,n is the Kronecker delta.

Leaning upon physical considerations [14], we
choose from Eqs. (18)–(20) one of the two possible

expressions for ηmn through ηm and ηn:

ηmn − o(h6) =
ηmηn
a00

+
∑
i,j

(
a
(i,j)
11 − a

(i)
m0a

(j)
0n

a00

)(
h(i)x h(j)z

)2
. (21)

Finally, using Eq. (21) one can formulate the equiv-
alence rule:

ηmn =
ηmηn
rF

+ o(h4), m ∨ n = 0, hx,z/dx,z < 1,

(22)
where ηm and ηn are classical grating efficiencies
obtained in conical diffraction, rF – the Fresnel fac-
tor of a surface. It is worth noting that ηm and ηn
in this equivalence rule should be computed with a
preservation of incidence and polarization angles of
both gratings in the absolute coordinate system.
Thus the efficiency of bi-gratings can be easily

expressed using Eq. (22) in terms of the product
of the efficiencies of two respective classical grat-
ings oriented in perpendicular dispersive planes and
working in conical mounts at any polarization state.
Equation 22 was derived in Ref. 14 for the normal
incidence of linearly-polarized light on a simple-
border-profile bi-grating. The considered equiva-
lence rule is very similar to the impulse approxima-
tion result of the atomic scattering theory (see, e.g.,
Ref. 15) and can include multiple scattering in each
direction, while always excluding cross-correlation
components.
The derived connection equation is approximate

and valid for shallow periodic surfaces of the type
considered. However, this equivalence rule was
checked successfully against various numerical ex-
amples, including non-shallow bi-gratings work-
ing at different wavelength-to-period ratios [14, 16].
It was found that it gives accurate results under
the following assumptions: (a) hx,z ≲ dx,z and
(b) λ ≳ dx,z. However, for deterministic and
non-deterministic surface profiles working in short
waves some modification of these conclusions is re-
quired. As follows from the known results obtained
from analytic and asymptotic expressions valid for
x-rays (see, e.g., Refs. 3, 4), Eq. (16) gives high-
accuracy solutions for shallow 0D (i.e. rows of
atoms with displacements), 1D, and 2D surfaces if
fulfilled the following conditions: (c) cosχhx,z ≪
dx,z and (d) λ ≪ dx,z, where χ is an incidence an-
gle on the surface. In case of x-ray-EUV ranges,
refractive indices of materials are close to the vac-
uum refractive index and hx,z can be large enough,
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especially for grazing incidence. Thus (a) and (c)
are close due to the nature of the perturbative de-
velopment. However, (d) extends significantly the
range of validity of Eq. (22), actually over the whole
short-wave range because of the absence of optical
resonances (i.e. due to plasmons, polaritons, waveg-
uide modes, etc) in x-rays.

5 Differential reflection coefficient of
x-ray Au mirror

Drawing from the above-mentioned MIM in a broad
sense, we are passing on now to a study of the ef-
fect of 2D boundary topology of a continuum film
on short-wave scattering intensity. We are going
to demonstrate that development of mirrors re-
quires accurate account of the film surface rough-
ness statistics and optical mount. In this Section,
the mean DRC of an Au rough mirror working at an
x-ray wavelength under grazing incidence is com-
puted using the equivalence formulae. The Au mir-
ror has the same model of roughness in perpendic-
ular planes which is approach closely the real con-
ditions, to wit: in (xOy) with a Gaussian height
distribution with the rms σx and a Gaussian au-
tocorrelation function C(x) = σx exp(x

2/ξ2x); and
in (yOz) with the same Gaussian height distribu-
tion and Gaussian autocorrelation function C(z) =
σz exp(z

2/ξ2z) with σz = σx = σ and ξz = ξx = ξ.
Statistical surface realizations with σ = 1 nm,
ξ = 15 nm were generated using the spectral
method [1].

Figure 2 displays graphically the calculated dif-
fuse reflectance of an Au mirror plotted vs. reflec-
tion order number (angle of scattering) in perpen-
dicular planes for the two incident angles, χ = 87◦

and χ = 89◦, beyond the critical angle at a wave-
length λ = 1.54 nm of linearly-polarized TE radi-
ation (with the electric field vector perpendicular
to the incidence plane). For the (xOy) plane χ is
equal to the polar angle θ in the given diffraction
problem described in Sec. 2 and for the (yOz) plane
χ is equal to the azimuthal angle ϕ in the diffrac-
tion problem. The state of polarization for the first
dispersive plane (classical grating) is TE, but for
the second one it is TM in the given diffraction
problem. To obtain the required ensemble aver-
aging and calculation accuracy for rough surfaces,
100–200 statistical sets have to be used with 1000
points within a 1-µm interval dx = dz = d on each.
To take into account the complex structure of the
rough surface and reach convergence of the results
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Figure 2: Scattering intensity of Au mirror
in perpendicular planes in grazing-incidence
x-rays.

obtained, we chose the number of collocation points
N = 2000 in the PCGrate-SX v.6.5 code [17]. The
refraction indices for Au were taken from Ref. 18.

As follows from a comparison of the curves dis-
played in Fig. 2, η0n corresponding to the (yOz)
plane is smaller than ηm0, which is related to the
(xOy) plane, near the specular peak for χ = 89◦.
By contrast, for χ = 87◦ we see that η0n is larger
than ηm0 throughout the order range studied, ex-
cept the specular reflection. The large difference
between scattering intensities of the two identi-
cal classical gratings working in two perpendicular
planes originates from the difference in grazing inci-
dence classical and conical diffraction. In particu-
lar, η0n is an approximately symmetric functions
in respect to specular peaks, while ηm0 depends
only on negative order numbers. Significantly, the
specular x-ray reflection coefficients are also dif-
ferent in perpendicular planes: η(x)0 = 0.363 and
η(z)0 = 0.286 – for χ = 87◦ and η(x)0 = 0.753 and
η(z)0 = 0.740 – for χ = 89◦. Note that rF = 0.412
and rF = 0.784 for χ = 87◦ and χ = 89◦, respec-
tively, and the TM values of rF are very close to
the TE values for both angles of incidence (with a
difference of about 0.002). Such appreciable differ-
ences between the scattering intensities of surfaces
having the equal topology in perpendicular planes
evidence the need of using precise roughness statis-
tics, diffraction and polarization angles, and exact
modelling tools in calculations of practical signifi-
cance for a sample.
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6 Conclusion

An important case of bi-periodic gratings and 2D
rough surfaces may be considered in a way by ex-
pressing the solution of the 3D Helmholtz equation
through solutions of the 2D general equation in con-
ical diffraction, an approach which may be resorted
to in short waves and shallow surface using the de-
rived equivalent rule. The effect of roughness on
the mirror DRC can be exactly taken into account
with the model in which an uneven surface is repre-
sented by a grating with large periods in perpendic-
ular planes, which includes a sufficient number of
random asperities. Rigorous calculations revealed
that diffuse x-ray scattering intensities obtained for
an Au mirror with boundary profiles having the
same surface statistics in perpendicular planes dif-
fer noticeably in those planes close to and far from
specular peaks.
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